找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Designs 2002; Further Computationa W. D. Wallis Book 2003Latest edition Springer Science+Business Media New York 2003 algorithms.computer.c

[復(fù)制鏈接]
樓主: Harrison
21#
發(fā)表于 2025-3-25 06:30:32 | 只看該作者
Sets of Steiner Triple Systems of Order 9 Revisited,We determine all minimal large sets of 8 Steiner triple systems of order 9 (STS(9)); there are precisely four pairwise nonisomorphic solutions. We also classify all maximal sets of STS(9) which mutually intersect in the same number of triples (uniformly intersecting sets).
22#
發(fā)表于 2025-3-25 10:14:25 | 只看該作者
23#
發(fā)表于 2025-3-25 13:31:06 | 只看該作者
24#
發(fā)表于 2025-3-25 17:25:39 | 只看該作者
25#
發(fā)表于 2025-3-25 22:50:32 | 只看該作者
26#
發(fā)表于 2025-3-26 02:44:49 | 只看該作者
https://doi.org/10.1007/978-3-322-90425-6he profile and projections of Hadamard matrices. A summary is then given which considers inequivalence of Hadamard matrices of orders up to 44..The final two sections give algorithms for constructing orthogonal designs, short amicable and amicable sets for use in the Kharaghani array.
27#
發(fā)表于 2025-3-26 04:23:24 | 只看該作者
https://doi.org/10.1007/978-3-322-90425-6based on an analysis of group actions and improves on Burnside’s table of marks approach [15]. In particular, no knowledge of the full subgroup lattice of the symmetric group on the point set is needed.
28#
發(fā)表于 2025-3-26 11:47:10 | 只看該作者
29#
發(fā)表于 2025-3-26 15:32:07 | 只看該作者
30#
發(fā)表于 2025-3-26 20:48:35 | 只看該作者
https://doi.org/10.1007/978-3-322-90425-6es and defining sets of the triple system and the latin trades and critical sets of the square..We apply these ideas and construct new families of minimal defining sets for triple systems associated with .(., 3).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安西县| 米林县| 兰西县| 通河县| 平南县| 康乐县| 上蔡县| 临沭县| 娄底市| 扎鲁特旗| 黔江区| 茂名市| 青浦区| 合川市| 孟村| 淮南市| 杂多县| 金寨县| 清水县| 成安县| 比如县| 安吉县| 台北县| 通化市| 定远县| 潞西市| 九江市| 石泉县| 新巴尔虎左旗| 通渭县| 白河县| 景宁| 庐江县| 忻州市| 太湖县| 仙游县| 灌南县| 土默特左旗| 延庆县| 邵东县| 朝阳区|