找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Design of Digital Chaotic Systems Updated by Random Iterations; Qianxue Wang,Simin Yu,Christophe Guyeux Book 2018 The Author(s) 2018 Digit

[復(fù)制鏈接]
樓主: 使入伍
11#
發(fā)表于 2025-3-23 12:07:23 | 只看該作者
12#
發(fā)表于 2025-3-23 16:00:19 | 只看該作者
SpringerBriefs in Applied Sciences and Technologyhttp://image.papertrans.cn/d/image/268699.jpg
13#
發(fā)表于 2025-3-23 18:42:20 | 只看該作者
14#
發(fā)表于 2025-3-23 23:26:04 | 只看該作者
https://doi.org/10.1007/978-3-030-27435-1In this chapter, we first recall the basic concept of real domain chaotic systems (RDCS) and integer domain chaotic systems (IDCS). Let . be a positive integer, . denote the set of Boolean numbers with its usual algebraic structure, and . the set of binary vectors of size ..
15#
發(fā)表于 2025-3-24 04:15:58 | 只看該作者
16#
發(fā)表于 2025-3-24 08:53:48 | 只看該作者
An Introduction to Digital Chaotic Systems Updated by Random Iterations,The objective of this first chapter is to introduce the so-called digital chaotic systems updated by random iterations and to present the latest developments in this field of research. Basic notations and terminologies are also provided for the sake of completeness.
17#
發(fā)表于 2025-3-24 11:17:30 | 只看該作者
18#
發(fā)表于 2025-3-24 16:35:57 | 只看該作者
19#
發(fā)表于 2025-3-24 20:36:08 | 只看該作者
Book 2018nal settings, and establishes a general framework for composing them. The contributors demonstrate that the associated state networks of digital chaotic systems are strongly connected. They then further prove that digital chaotic systems satisfy Devaney’s definition of chaos on the domain of finite
20#
發(fā)表于 2025-3-25 02:02:38 | 只看該作者
Michelle A. Harrison,Aurélie Joubertle gate array (FPGA) platform. As each operation of HDDCS is executed in the same fixed precision, no quantization loss occurs. Therefore, it provides a perfect solution to the dynamical degradation of digital chaos.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平乐县| 东平县| 昭平县| 金湖县| 嘉荫县| 罗甸县| 裕民县| 芷江| 乐平市| 汾西县| 乌拉特中旗| 远安县| 景宁| 阿拉善盟| 敦煌市| 潮安县| 溧水县| 兴仁县| 繁昌县| 永兴县| 施秉县| 永寿县| 贺兰县| 赤峰市| 龙泉市| 广东省| 潼关县| 青龙| 晋州市| 天长市| 江源县| 横峰县| 当阳市| 永福县| 泰宁县| 全椒县| 霍林郭勒市| 哈巴河县| 唐山市| 元阳县| 那坡县|