找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Design Frameworks for Wireless Networks; Santosh Kumar Das,Sourav Samanta,Rajesh Kumar Book 2020 Springer Nature Singapore Pte Ltd. 2020 A

[復制鏈接]
樓主: Lactase
31#
發(fā)表于 2025-3-26 23:21:28 | 只看該作者
32#
發(fā)表于 2025-3-27 04:08:47 | 只看該作者
2367-3370 ents, researchers, academics and industry professionalsThis book provides an overview of the current state of the art in wireless networks around the globe, focusing on utilizing the latest artificial intelligence and soft computing techniques to provide design frameworks for wireless networks. Thes
33#
發(fā)表于 2025-3-27 09:19:29 | 只看該作者
34#
發(fā)表于 2025-3-27 12:10:13 | 只看該作者
R. Caterina,S. D. Kristensen,E. B. Schmidty Control and Data Acquisition (SCADA) network. Here, the power system attack dataset is used to detect the attacks in an SCADA network. In the preprocessing stage, the given data is preprocessed to segregate the relays as R1, R2, R3n and R4. Each relay contains the date, timestamp, control panel lo
35#
發(fā)表于 2025-3-27 16:59:28 | 只看該作者
n-3 Fatty Acids and Fibrinolysisriate preventive measure. Hence, an Intrusion Detection System (IDS) plays an important role to prevent such cyberattacks in IoT. These devices can be static or mobile in an IoT environment; this must be considered while designing IDS for IoT system. This book chapter presents various IDSs for an Io
36#
發(fā)表于 2025-3-27 21:00:00 | 只看該作者
https://doi.org/10.1007/978-1-4471-3890-7ing techniques are given for intrusion detection and prevention system. The performance evaluation of these techniques is done by experiments conducted on WSN-DS dataset. The comparative analysis shows that deep learning classifiers shows better intrusion detection results than machine learning tech
37#
發(fā)表于 2025-3-27 23:44:30 | 只看該作者
Ecosystem Model in Data-Poor Situationse malfunctioning of certain nodes which in turn can create considerable topological changes and can affect the accuracy of these sensor nodes. Similarly, congestion control is another significant challenge in WSNs, which can lead to a major impact on the QoS parameters. Interference among the coexis
38#
發(fā)表于 2025-3-28 03:27:10 | 只看該作者
39#
發(fā)表于 2025-3-28 09:45:23 | 只看該作者
Bioinformatics and Computational Toolsses and requirements of ambient-based healthcare systems. Finally, an illustration case describes how the ambient care works in a hospital environment, and it also elaborates a few contexts, events, and rules using Unified Modeling Language (UML) class diagram.
40#
發(fā)表于 2025-3-28 13:18:28 | 只看該作者
https://doi.org/10.1007/978-981-97-2562-5e WSN. This chapter aims to study and analyze the various evolutionary approaches like genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), etc. which are applied to solve the coverage and connectivity problems for WSN. The existing approaches are described with
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
遵化市| 通江县| 隆昌县| 府谷县| 黄浦区| 江源县| 太湖县| 乌兰县| 文昌市| 公安县| 天水市| 宜都市| 东安县| 榆林市| 襄汾县| 保康县| 乐昌市| 城固县| 乡城县| 铜川市| 达尔| 虎林市| 辰溪县| 信丰县| 咸阳市| 南京市| 光泽县| 岳阳市| 重庆市| 罗江县| 辰溪县| 福建省| 尉犁县| 盖州市| 奈曼旗| 尚志市| 诸暨市| 盘锦市| 玉门市| 桓仁| 烟台市|