找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Descriptive Topology in Selected Topics of Functional Analysis; Jerzy K?kol,Wies?aw Kubi?,Manuel López-Pellicer Book 20111st edition Sprin

[復制鏈接]
樓主: 服裝
51#
發(fā)表于 2025-3-30 10:25:19 | 只看該作者
52#
發(fā)表于 2025-3-30 14:48:30 | 只看該作者
53#
發(fā)表于 2025-3-30 17:49:23 | 只看該作者
54#
發(fā)表于 2025-3-30 21:03:24 | 只看該作者
A Three-Space Property for Analytic Spaces,In this chapter, we show that analyticity is not a three-space property. We prove, however, that a metrizable tvs . is analytic if it contains a complete locally convex analytic subspace . such that the quotient ./. is analytic. We reprove (using Corson’s example) that the Lindel?f property is not a three-space property.
55#
發(fā)表于 2025-3-31 01:39:59 | 只看該作者
56#
發(fā)表于 2025-3-31 08:27:28 | 只看該作者
,Corson’s Property (,) and Tightness,In this chapter, the class of Banach spaces having the property?(.) (isolated by Corson) is studied. This property provides a large subclass of Banach spaces . whose weak topology need not be Lindel?f. We collect some results of Corson, Pol, Frankiewicz, Plebanek and Ryll-Nardzewski.
57#
發(fā)表于 2025-3-31 11:06:30 | 只看該作者
Banach Spaces with Many Projections,In this chapter, we discuss Banach spaces that have a rich family of norm-one projections onto separable subspaces. One of the tools, coming from logic, is the concept of an elementary submodel.
58#
發(fā)表于 2025-3-31 14:21:58 | 只看該作者
59#
發(fā)表于 2025-3-31 19:35:25 | 只看該作者
The Rise of BigTechs in the Financial Market and strong duals of (.)-spaces. We study trans-separable spaces and show that a tvs with a resolution of precompact sets is trans-separable. This is applied to prove that precompact sets are metrizable in any uniform space whose uniformity admits a?.-basis.
60#
發(fā)表于 2025-3-31 23:02:20 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
麟游县| 潞城市| 固安县| 湛江市| 邹平县| 保山市| 连南| 长泰县| 浮梁县| 门头沟区| 渝中区| 西乌珠穆沁旗| 辛集市| 宜君县| 吉安县| 务川| 奉新县| 麻栗坡县| 彰武县| 三亚市| 沾化县| 庆城县| 雅江县| 仙居县| 依兰县| 沙雅县| 万州区| 菏泽市| 尼玛县| 临沭县| 大丰市| 宝丰县| 法库县| 郑州市| 江川县| 边坝县| 喀喇沁旗| 永春县| 宝坻区| 曲松县| 彩票|