找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Descriptive Data Mining; David L. Olson Book 20171st edition Springer Nature Singapore Pte Ltd. 2017 Business Analytics.Data Mining.Descri

[復(fù)制鏈接]
查看: 41774|回復(fù): 41
樓主
發(fā)表于 2025-3-21 19:44:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Descriptive Data Mining
編輯David L. Olson
視頻videohttp://file.papertrans.cn/269/268302/268302.mp4
概述Includes a discussion of descriptive analytic modeling.Covers visualization in the context of data mining.Demonstrates modeling with R and other open source software products.Includes supplementary ma
叢書名稱Computational Risk Management
圖書封面Titlebook: Descriptive Data Mining;  David L. Olson Book 20171st edition Springer Nature Singapore Pte Ltd. 2017 Business Analytics.Data Mining.Descri
描述This book offers an overview of knowledge management. It starts with an introduction to the subject, placing descriptive models in the context of the overall field as well as within the more specific field of data mining analysis. Chapter 2 covers data visualization, including directions for accessing R open source software (described through Rattle). Both R and Rattle are free to students. Chapter 3 then describes market basket analysis, comparing it with more advanced models, and addresses the concept of lift. Subsequently, Chapter 4 describes smarketing RFM models and compares it with more advanced predictive models. Next, Chapter 5 describes association rules, including the APriori algorithm and provides software support from R. Chapter 6 covers cluster analysis, including software support from R (Rattle), KNIME, and WEKA, all of which are open source. Chapter 7 goes on to describe link analysis, social network metrics, and open source NodeXL software, and demonstrates link analysis application using PolyAnalyst output. Chapter 8 concludes the monograph..Using business-related data to demonstrate models, this descriptive book explains how methods work with some citations, but w
出版日期Book 20171st edition
關(guān)鍵詞Business Analytics; Data Mining; Descriptive Data Mining; Visualization; Open Source Software; Cluster An
版次1
doihttps://doi.org/10.1007/978-981-10-3340-7
isbn_softcover978-981-10-9847-5
isbn_ebook978-981-10-3340-7Series ISSN 2191-1436 Series E-ISSN 2191-1444
issn_series 2191-1436
copyrightSpringer Nature Singapore Pte Ltd. 2017
The information of publication is updating

書目名稱Descriptive Data Mining影響因子(影響力)




書目名稱Descriptive Data Mining影響因子(影響力)學(xué)科排名




書目名稱Descriptive Data Mining網(wǎng)絡(luò)公開度




書目名稱Descriptive Data Mining網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Descriptive Data Mining被引頻次




書目名稱Descriptive Data Mining被引頻次學(xué)科排名




書目名稱Descriptive Data Mining年度引用




書目名稱Descriptive Data Mining年度引用學(xué)科排名




書目名稱Descriptive Data Mining讀者反饋




書目名稱Descriptive Data Mining讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:59:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:06:51 | 只看該作者
Nadjma Yassari,Lena-Maria M?ller?Recency, Frequency, and Monetary (RFM)analysis seeks to identify customers who are more likely to respond to new offers. While lift looks at the static measure of response to a particular campaign, RFM keeps track of customer transactions by time, by frequency, and by amount.
地板
發(fā)表于 2025-3-22 07:46:15 | 只看該作者
5#
發(fā)表于 2025-3-22 11:32:31 | 只看該作者
6#
發(fā)表于 2025-3-22 14:58:26 | 只看該作者
Association Rules,Association rules seek to identify combinations of things that frequently occur together (.). This is also the basis of market basket analysis, which we discussed in terms of correlation and Jaccard ratios. Association rules take things a step further by applying a form of machine learning, the most common of which is the apriori algorithm.
7#
發(fā)表于 2025-3-22 17:58:21 | 只看該作者
Function of Filaggrin and Its Metabolitesneeded and to analyze available data to make effective decisions regarding whatever the organization does. This include research, digging through records, or gathering data from wherever it can be found. . and . of data involves database management, using many tools developed by computer science. Th
8#
發(fā)表于 2025-3-23 00:04:08 | 只看該作者
File Sharing in Peer-to-Peer-Netzwerkens and practices for exploration and investigation of past business performance to gain insight and aid business planning. The focus is on developing new insights and understanding based on data and statistical analysis. The emphasis is on fact-based management to drive decision making.
9#
發(fā)表于 2025-3-23 02:45:50 | 只看該作者
10#
發(fā)表于 2025-3-23 08:48:50 | 只看該作者
Ayesha Shahid,Isfandyar Ali Khanbasic algorithms work. The second section shows how software works on this standardized data. The third section will demonstrate software with original data not requiring standardization. If you don’t care what computers are doing, you can proceed to this section.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 06:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
雷山县| 贵港市| 榆社县| 元阳县| 贵港市| 礼泉县| 丰台区| 寿光市| 保山市| 罗定市| 松潘县| 公安县| 望都县| 巨鹿县| 左贡县| 汕尾市| 崇明县| 云梦县| 福海县| 招远市| 泸州市| 汽车| 清丰县| 横山县| 夏河县| 东光县| 福建省| 鹰潭市| 柘荣县| 谢通门县| 邢台县| 信丰县| 榆社县| 芷江| 承德县| 峨眉山市| 焦作市| 定襄县| 罗甸县| 富裕县| 文化|