找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Descriptional Complexity of Formal Systems; 15th International W Helmut Jurgensen,Rogério Reis Conference proceedings 2013 Springer-Verlag

[復(fù)制鏈接]
樓主: ARRAY
11#
發(fā)表于 2025-3-23 13:09:30 | 只看該作者
William L. Jaffe MD,Harlan B. Levine MDtransitions in a minimal finite automaton accepting a regular language, and apparently, this number has no connection to Chaitin-Kolmogorov complexity. In this paper we establish such a connection by extending the notions of Blum static complexity and of encoded function space.
12#
發(fā)表于 2025-3-23 14:12:05 | 只看該作者
Glass Fiber Reinforced Polymers,sions, and syntactic monoids. It turns out that as in the case of ordinary finite automata nondeterministic biautomata are superior to biautomata with respect to their relative succinctness in representing regular languages.
13#
發(fā)表于 2025-3-23 18:20:48 | 只看該作者
https://doi.org/10.1007/978-3-319-78766-4regular languages over an (.???2)-element alphabet and a few tight bounds for binary .-trivial regular languages. The case of .-trivial regular languages over an (.???.)-element alphabet, for 2?≤?.?≤?.???3, is open.
14#
發(fā)表于 2025-3-23 22:14:10 | 只看該作者
Blum Static Complexity and Encoding Spaces,transitions in a minimal finite automaton accepting a regular language, and apparently, this number has no connection to Chaitin-Kolmogorov complexity. In this paper we establish such a connection by extending the notions of Blum static complexity and of encoded function space.
15#
發(fā)表于 2025-3-24 06:14:23 | 只看該作者
Nondeterministic Biautomata and Their Descriptional Complexity,sions, and syntactic monoids. It turns out that as in the case of ordinary finite automata nondeterministic biautomata are superior to biautomata with respect to their relative succinctness in representing regular languages.
16#
發(fā)表于 2025-3-24 09:50:55 | 只看該作者
On the State Complexity of the Reverse of ,- and ,-Trivial Regular Languages,regular languages over an (.???2)-element alphabet and a few tight bounds for binary .-trivial regular languages. The case of .-trivial regular languages over an (.???.)-element alphabet, for 2?≤?.?≤?.???3, is open.
17#
發(fā)表于 2025-3-24 13:58:54 | 只看該作者
18#
發(fā)表于 2025-3-24 18:28:07 | 只看該作者
19#
發(fā)表于 2025-3-24 22:20:24 | 只看該作者
20#
發(fā)表于 2025-3-25 01:44:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝丰县| 治县。| 孝感市| 柞水县| 绥阳县| 宁化县| 汾阳市| 长乐市| 巩义市| 灵山县| 桑植县| 宜黄县| 新巴尔虎左旗| 泸州市| 冕宁县| 恩平市| 扬中市| 巴彦县| 龙陵县| 禹城市| 高雄县| 尼勒克县| 平泉县| 沽源县| 山东| 孝昌县| 罗甸县| 临西县| 井冈山市| 班玛县| 古交市| 密山市| 乳山市| 平陆县| 进贤县| 华蓥市| 苍溪县| 临洮县| 包头市| 伽师县| 安化县|