找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Descriptional Complexity of Formal Systems; 18th IFIP WG 1.2 Int Cezar Campeanu,Florin Manea,Jeffrey Shallit Conference proceedings 2016 IF

[復(fù)制鏈接]
樓主: 惡夢
21#
發(fā)表于 2025-3-25 05:30:47 | 只看該作者
Michael Flecker,Teddy Y. H. Simcerns the structure of the minimum automaton accepting the language under consideration. It is also observed that there exist reduced reversible automata which are not minimal, in the sense that all the automata obtained by merging some of their equivalent states are irreversible. Furthermore, it is
22#
發(fā)表于 2025-3-25 08:24:36 | 只看該作者
23#
發(fā)表于 2025-3-25 12:45:51 | 只看該作者
Hwee Hwang Sim,Shiang Swee Grace Liowwer bounds for the size of the minimal deterministic finite automaton (DFA) needed for the radius . prefix distance neighbourhood of an . state DFA that recognizes, respectively, a finite, a prefix-closed and a prefix-free language. For prefix-closed languages the lower bound automata are defined ov
24#
發(fā)表于 2025-3-25 18:16:29 | 只看該作者
Ma?gorzata Oleszkiewicz-PeralbaZemek in 2012 [.]. Second, we close a study started by ?erno and Mráz in 2010 [.] by proving that a clearing restarting automaton using contexts of length two can accept a binary non-context-free language.
25#
發(fā)表于 2025-3-25 22:28:46 | 只看該作者
26#
發(fā)表于 2025-3-26 01:45:14 | 只看該作者
Unary Self-verifying Symmetric Difference Automata,We show that there is a family of languages . which can always be represented non-trivially by unary SV-XNFA. We also consider the descriptional complexity of unary SV-XNFA, giving an upper and lower bound for state complexity.
27#
發(fā)表于 2025-3-26 07:40:27 | 只看該作者
28#
發(fā)表于 2025-3-26 10:32:03 | 只看該作者
Cezar Campeanu,Florin Manea,Jeffrey ShallitIncludes supplementary material:
29#
發(fā)表于 2025-3-26 16:14:38 | 只看該作者
30#
發(fā)表于 2025-3-26 20:24:00 | 只看該作者
https://doi.org/10.1007/978-3-319-41114-9automata theory; context free languages; formal languages; regular languages; turing machines; automata e
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
迁西县| 五寨县| 鄂托克旗| 郴州市| 田阳县| 通许县| 军事| 新津县| 榆中县| 石泉县| 山丹县| 梅州市| 光泽县| 龙江县| 福泉市| 寻乌县| 华池县| 玉山县| 江川县| 周口市| 河北区| 崇仁县| 冷水江市| 珲春市| 巨野县| 连江县| 保亭| 淮滨县| 望奎县| 德保县| 灵川县| 湘阴县| 全南县| 铅山县| 仁布县| 双牌县| 托里县| 海口市| 宣恩县| 黄山市| 云霄县|