找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Descriptional Complexity of Formal Systems; 20th IFIP WG 1.02 In Stavros Konstantinidis,Giovanni Pighizzini Conference proceedings 2018 IFI

[復(fù)制鏈接]
樓主: 熱情美女
21#
發(fā)表于 2025-3-25 04:41:40 | 只看該作者
22#
發(fā)表于 2025-3-25 08:11:15 | 只看該作者
23#
發(fā)表于 2025-3-25 14:09:45 | 只看該作者
24#
發(fā)表于 2025-3-25 16:04:19 | 只看該作者
Electroweak Interactions of Quarksity function is determined to be .. In the case of a unary alphabet, disjoint union requires up?to . states, unambiguous concatenation has state complexity ., and unambiguous star requires . states in the worst case.
25#
發(fā)表于 2025-3-25 21:49:15 | 只看該作者
Spontaneous Global Symmetry Breakingstate complexity of the Boolean operations as well as the operations concatenation and iteration is investigated, where tight upper and lower bounds are derived for unary as well as arbitrary alphabets under the condition that the corresponding language classes are closed under the operation considered.
26#
發(fā)表于 2025-3-26 01:28:48 | 只看該作者
27#
發(fā)表于 2025-3-26 05:02:08 | 只看該作者
State Complexity of Unambiguous Operations on Deterministic Finite Automata,ity function is determined to be .. In the case of a unary alphabet, disjoint union requires up?to . states, unambiguous concatenation has state complexity ., and unambiguous star requires . states in the worst case.
28#
發(fā)表于 2025-3-26 11:58:51 | 只看該作者
29#
發(fā)表于 2025-3-26 16:11:44 | 只看該作者
A New Technique for Reachability of States in Concatenation Automata,tion automata. We prove some results that seem to capture the essence of many of these induction arguments. Using these results, reachability proofs in concatenation automata can often be done more simply and without using induction directly.
30#
發(fā)表于 2025-3-26 17:19:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 03:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
克拉玛依市| 平谷区| 罗源县| 霸州市| 山阳县| 双峰县| 高碑店市| 博兴县| 曲阜市| 平果县| 贵州省| 德钦县| 民县| 昭通市| 河南省| 贺兰县| 平远县| 东明县| 泾阳县| 弋阳县| 宁晋县| 邵东县| 大同市| 桑日县| 定结县| 鞍山市| 濮阳市| 仁怀市| 波密县| 榆林市| 阿拉尔市| 茶陵县| 峨眉山市| 湟中县| 安康市| 垫江县| 南澳县| 绵阳市| 黄冈市| 上饶县| 建阳市|