找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deriving Priorities from Incomplete Fuzzy Reciprocal Preference Relations; Theories and Methodo Yejun Xu Book 2023 The Editor(s) (if applic

[復制鏈接]
樓主: DUMMY
31#
發(fā)表于 2025-3-27 00:54:47 | 只看該作者
A Chi-Square Method,In Sect. ., we have described the group decision-making problems with incomplete fuzzy reciprocal preference relations, where the relationship between the elements . and weights .(.?∈?.) should satisfy Eq. (.). In the following, we propose another method called chi-square method.
32#
發(fā)表于 2025-3-27 02:32:22 | 只看該作者
A Least Deviation Method,In this chapter, we propose another method called least deviation method (LDM).
33#
發(fā)表于 2025-3-27 06:52:56 | 只看該作者
Weighted Least Square Method,In this chapter, we propose a method called weighted least square method (WLSM) for priority of an incomplete fuzzy reciprocal preference relation (Xu & Da, 2008). It is similar with Gong (2008)’s least square method.
34#
發(fā)表于 2025-3-27 12:54:14 | 只看該作者
Priorities from Incomplete Hesitant Fuzzy Reciprocal Preference Relations,In the former chapters, we have introduced several priority methods for incomplete fuzzy reciprocal preference relations. In this chapter, we introduce another preference relation called hesitant fuzzy reciprocal preference relation and present how to derive the priority weights from incomplete hesitant fuzzy reciprocal preference relations.
35#
發(fā)表于 2025-3-27 16:33:47 | 只看該作者
36#
發(fā)表于 2025-3-27 19:14:50 | 只看該作者
Normalizing Rank Aggregation-Based Method,, and it is described in Eq. (.). In this chapter, we further investigate the parameter . and call it normalizing rank aggregation-based method when .?=?./2 or .?=?(.???1)/2. Additionally, we will show that it is more reasonable when .?=?./2 or .?=?(.???1)/2 than .?=?0.5, which is extensively used i
37#
發(fā)表于 2025-3-27 23:34:15 | 只看該作者
38#
發(fā)表于 2025-3-28 05:59:35 | 只看該作者
39#
發(fā)表于 2025-3-28 06:52:22 | 只看該作者
40#
發(fā)表于 2025-3-28 11:33:12 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 06:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
潢川县| 库车县| 泗水县| 满城县| 乌兰察布市| 乌拉特前旗| 房山区| 通州区| 依安县| 白山市| 南雄市| 沙坪坝区| 武乡县| 土默特左旗| 松溪县| 上蔡县| 晋江市| 茌平县| 安丘市| 奉贤区| 会昌县| 嘉峪关市| 大理市| 武山县| 涟源市| 石台县| 朝阳区| 长宁县| 依兰县| 祁阳县| 平乡县| 南阳市| 航空| 遂川县| 都兰县| 闵行区| 万山特区| 民丰县| 罗甸县| 兰坪| 佛学|