找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deriving Priorities from Incomplete Fuzzy Reciprocal Preference Relations; Theories and Methodo Yejun Xu Book 2023 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: DUMMY
31#
發(fā)表于 2025-3-27 00:54:47 | 只看該作者
A Chi-Square Method,In Sect. ., we have described the group decision-making problems with incomplete fuzzy reciprocal preference relations, where the relationship between the elements . and weights .(.?∈?.) should satisfy Eq. (.). In the following, we propose another method called chi-square method.
32#
發(fā)表于 2025-3-27 02:32:22 | 只看該作者
A Least Deviation Method,In this chapter, we propose another method called least deviation method (LDM).
33#
發(fā)表于 2025-3-27 06:52:56 | 只看該作者
Weighted Least Square Method,In this chapter, we propose a method called weighted least square method (WLSM) for priority of an incomplete fuzzy reciprocal preference relation (Xu & Da, 2008). It is similar with Gong (2008)’s least square method.
34#
發(fā)表于 2025-3-27 12:54:14 | 只看該作者
Priorities from Incomplete Hesitant Fuzzy Reciprocal Preference Relations,In the former chapters, we have introduced several priority methods for incomplete fuzzy reciprocal preference relations. In this chapter, we introduce another preference relation called hesitant fuzzy reciprocal preference relation and present how to derive the priority weights from incomplete hesitant fuzzy reciprocal preference relations.
35#
發(fā)表于 2025-3-27 16:33:47 | 只看該作者
36#
發(fā)表于 2025-3-27 19:14:50 | 只看該作者
Normalizing Rank Aggregation-Based Method,, and it is described in Eq. (.). In this chapter, we further investigate the parameter . and call it normalizing rank aggregation-based method when .?=?./2 or .?=?(.???1)/2. Additionally, we will show that it is more reasonable when .?=?./2 or .?=?(.???1)/2 than .?=?0.5, which is extensively used i
37#
發(fā)表于 2025-3-27 23:34:15 | 只看該作者
38#
發(fā)表于 2025-3-28 05:59:35 | 只看該作者
39#
發(fā)表于 2025-3-28 06:52:22 | 只看該作者
40#
發(fā)表于 2025-3-28 11:33:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 05:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太湖县| 平凉市| 海南省| 延长县| 安顺市| 石渠县| 江永县| 汝南县| 资兴市| 肇州县| 辛集市| 清流县| 永安市| 苏州市| 萨迦县| 米易县| 丹阳市| 策勒县| 许昌县| 遂溪县| 尚义县| 台北县| 土默特右旗| 大连市| 新化县| 廊坊市| 新龙县| 繁峙县| 无棣县| 吉隆县| 麦盖提县| 福州市| 靖远县| 钟祥市| 河曲县| 河津市| 舞阳县| 濮阳市| 德化县| 九江市| 灵山县|