找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Derivative Security Pricing; Techniques, Methods Carl Chiarella,Xue-Zhong He,Christina Sklibosios N Book 2015 Springer-Verlag Berlin Heide

[復(fù)制鏈接]
樓主: Heel-Spur
11#
發(fā)表于 2025-3-23 12:51:51 | 只看該作者
Option Pricing Under Jump-Diffusion Processespricing model, we provide an option pricing integro-partial differential equations and a general solution. We also examine alternative ways to construct the hedging portfolio and to price option when the jump sizes are fixed.
12#
發(fā)表于 2025-3-23 17:26:55 | 只看該作者
13#
發(fā)表于 2025-3-23 19:34:18 | 只看該作者
14#
發(fā)表于 2025-3-24 01:53:42 | 只看該作者
Volatility Smiless which may underestimate the size of the smile. We then develop an approach to calibrate the smile by choosing the volatility function as a deterministic function of the underlying asset price and time so as to fit the model option price to the observed volatility smile.
15#
發(fā)表于 2025-3-24 02:30:25 | 只看該作者
16#
發(fā)表于 2025-3-24 08:53:02 | 只看該作者
17#
發(fā)表于 2025-3-24 14:26:38 | 只看該作者
18#
發(fā)表于 2025-3-24 15:18:02 | 只看該作者
Partial Differential Equation Approach Under Geometric Jump-Diffusion Processng asset follows a diffusion process. The second is the direct approach using the expectation operator expression that follows from the martingale representation. We also show how these two approaches are connected.
19#
發(fā)表于 2025-3-24 19:34:23 | 只看該作者
20#
發(fā)表于 2025-3-25 01:55:00 | 只看該作者
An Initial Attempt at Pricing an Optionat investors are risk neutral and using the Kolmogorov equation for the conditional probability, we demonstrate how the Black–Scholes option formula can be arrived. We also illustrate how the option price can be viewed in a quite natural way as a martingale and the Feynman–Kac formula, two very impo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥江县| 昌都县| 拜泉县| 临朐县| 武川县| 武穴市| 息烽县| 永州市| 北流市| 额尔古纳市| 方山县| 乌兰察布市| 南投市| 扶风县| 昌邑市| 南江县| 黑龙江省| 阜阳市| 威信县| 左贡县| 鲜城| 东至县| 罗甸县| 彰武县| 资阳市| 饶平县| 黄龙县| 五台县| 松阳县| 鄢陵县| 普格县| 平利县| 会宁县| 垣曲县| 会理县| 贵溪市| 绥宁县| 莱州市| 沐川县| 彭水| 五家渠市|