找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Partial Differential Equations of Second Order; David Gilbarg,Neil S. Trudinger Book 19771st edition Springer-Verlag Berlin Heide

[復(fù)制鏈接]
查看: 20914|回復(fù): 55
樓主
發(fā)表于 2025-3-21 17:36:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Elliptic Partial Differential Equations of Second Order
編輯David Gilbarg,Neil S. Trudinger
視頻videohttp://file.papertrans.cn/308/307802/307802.mp4
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Elliptic Partial Differential Equations of Second Order;  David Gilbarg,Neil S. Trudinger Book 19771st edition Springer-Verlag Berlin Heide
描述This volume is intended as an essentially self contained exposition of portions of the theory of second order quasilinear elliptic partial differential equations, with emphasis on the Dirichlet problem in bounded domains. It grew out of lecture notes for graduate courses by the authors at Stanford University, the final material extending well beyond the scope of these courses. By including preparatory chapters on topics such as potential theory and functional analysis, we have attempted to make the work accessible to a broad spectrum of readers. Above all, we hope the readers of this book will gain an appreciation of the multitude of ingenious barehanded techniques that have been developed in the study of elliptic equations and have become part of the repertoire of analysis. Many individuals have assisted us during the evolution of this work over the past several years. In particular, we are grateful for the valuable discussions with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and B. Turkington; for the contributions of G. Williams in Section 10.5 and of A. S. Geue in Section
出版日期Book 19771st edition
關(guān)鍵詞differential equation; functional analysis; partial differential equation; potential theory
版次1
doihttps://doi.org/10.1007/978-3-642-96379-7
isbn_ebook978-3-642-96379-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 1977
The information of publication is updating

書目名稱Elliptic Partial Differential Equations of Second Order影響因子(影響力)




書目名稱Elliptic Partial Differential Equations of Second Order影響因子(影響力)學(xué)科排名




書目名稱Elliptic Partial Differential Equations of Second Order網(wǎng)絡(luò)公開度




書目名稱Elliptic Partial Differential Equations of Second Order網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Elliptic Partial Differential Equations of Second Order被引頻次




書目名稱Elliptic Partial Differential Equations of Second Order被引頻次學(xué)科排名




書目名稱Elliptic Partial Differential Equations of Second Order年度引用




書目名稱Elliptic Partial Differential Equations of Second Order年度引用學(xué)科排名




書目名稱Elliptic Partial Differential Equations of Second Order讀者反饋




書目名稱Elliptic Partial Differential Equations of Second Order讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:16:45 | 只看該作者
https://doi.org/10.1007/978-3-642-91922-0ss these estimates are of considerable importance since they seem to be the principal factor in determining the solvability character of the Dirichlet problem. This will be evidenced by the non-existence results at the end of the chanter.
板凳
發(fā)表于 2025-3-22 01:03:52 | 只看該作者
地板
發(fā)表于 2025-3-22 05:50:32 | 只看該作者
5#
發(fā)表于 2025-3-22 08:50:16 | 只看該作者
6#
發(fā)表于 2025-3-22 15:58:28 | 只看該作者
https://doi.org/10.1007/978-3-642-96379-7differential equation; functional analysis; partial differential equation; potential theory
7#
發(fā)表于 2025-3-22 20:03:40 | 只看該作者
8#
發(fā)表于 2025-3-22 22:04:20 | 只看該作者
Elliptic Partial Differential Equations of Second Order978-3-642-96379-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
9#
發(fā)表于 2025-3-23 04:23:47 | 只看該作者
Mathematische Probleme l?sen mit MapleLet Ω be a domain in ?. and . a ..(Ω) function. The Laplacian of ., denoted ⊿., is defined by
10#
發(fā)表于 2025-3-23 09:15:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肥东县| 朝阳县| 阜阳市| 彭山县| 谢通门县| 招远市| 叙永县| 邯郸县| 丹阳市| 信阳市| 巴塘县| 清新县| 汶上县| 龙口市| 栾城县| 罗江县| 桃源县| 来安县| 垣曲县| 惠水县| 平舆县| 石家庄市| 剑川县| 德惠市| 汶上县| 巧家县| 阜南县| 黄石市| 永胜县| 北川| 营山县| 新河县| 丰县| 天门市| 石渠县| 剑河县| 桂林市| 文昌市| 泸定县| 普宁市| 湖南省|