找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deployable Machine Learning for Security Defense; First International Gang Wang,Arridhana Ciptadi,Ali Ahmadzadeh Conference proceedings 20

[復制鏈接]
樓主: metabolism
31#
發(fā)表于 2025-3-26 21:49:02 | 只看該作者
DAPT 2020 - Constructing a Benchmark Dataset for Advanced Persistent Threatstion faces, specifically attacks that go undetected by traditional signature-based intrusion detection systems. Along with the ability to process large amounts of data, machine learning brings the potential to detect contextual and collective anomalies, an essential attribute of an ideal threat dete
32#
發(fā)表于 2025-3-27 02:50:23 | 只看該作者
33#
發(fā)表于 2025-3-27 07:02:27 | 只看該作者
34#
發(fā)表于 2025-3-27 13:00:03 | 只看該作者
35#
發(fā)表于 2025-3-27 15:23:08 | 只看該作者
Lecture Notes in Computer Sciencey malware. We also demonstrate the annotation process using MALOnt on exemplar threat intelligence reports. A work in progress, this research is part of a larger effort towards auto-generation of knowledge graphs for gathering malware threat intelligence from heterogeneous online resources.
36#
發(fā)表于 2025-3-27 20:45:40 | 只看該作者
https://doi.org/10.1007/978-3-031-64483-2ned adversarial training and corresponding insights to efficiently make the model more robust on safety-critical scenarios. We hope this work can serve as a stepping stone to seek efficient defenses against adversarial examples in large-scale object detectors.
37#
發(fā)表于 2025-3-27 23:13:49 | 只看該作者
https://doi.org/10.1007/978-3-031-64171-8) systems, as well as recent advances in deep learning, we introduce a novel intrusion forecasting application. Using six months of data from a real, large organization, we demonstrate that this provides improved intrusion forecasting accuracy compared to existing methods.
38#
發(fā)表于 2025-3-28 05:10:37 | 只看該作者
39#
發(fā)表于 2025-3-28 06:43:39 | 只看該作者
Towards Practical Robustness Improvement for Object Detection in Safety-Critical Scenariosned adversarial training and corresponding insights to efficiently make the model more robust on safety-critical scenarios. We hope this work can serve as a stepping stone to seek efficient defenses against adversarial examples in large-scale object detectors.
40#
發(fā)表于 2025-3-28 13:22:54 | 只看該作者
Forecasting Network Intrusions from Security Logs Using LSTMs) systems, as well as recent advances in deep learning, we introduce a novel intrusion forecasting application. Using six months of data from a real, large organization, we demonstrate that this provides improved intrusion forecasting accuracy compared to existing methods.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 09:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
陆丰市| 黄浦区| 太仆寺旗| 孝感市| 长垣县| 临漳县| 错那县| 凤台县| 达日县| 韶山市| 如皋市| 湘西| 湖州市| 丁青县| 浮山县| 九龙县| 准格尔旗| 台江县| 滨海县| 广汉市| 华池县| 襄汾县| 花莲市| 宣城市| 富顺县| 彰化市| 江西省| 巩义市| 天峻县| 乌兰县| 云梦县| 本溪市| 界首市| 嘉定区| 尚志市| 西丰县| 建湖县| 镇远县| 黑山县| 抚顺县| 正阳县|