找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deployable Machine Learning for Security Defense; Second International Gang Wang,Arridhana Ciptadi,Ali Ahmadzadeh Conference proceedings 20

[復(fù)制鏈接]
樓主: 遠(yuǎn)見
21#
發(fā)表于 2025-3-25 06:19:03 | 只看該作者
22#
發(fā)表于 2025-3-25 07:49:32 | 只看該作者
23#
發(fā)表于 2025-3-25 13:14:41 | 只看該作者
https://doi.org/10.1007/978-3-658-45233-9. We evaluate the performance of . in terms of quality of data generated, by training it on both a simulated dataset and a real network traffic data set. Finally, to answer the question—can real network traffic data be substituted with synthetic data to train models of comparable accuracy?—we train
24#
發(fā)表于 2025-3-25 16:36:03 | 只看該作者
25#
發(fā)表于 2025-3-25 21:08:55 | 只看該作者
Rameshnath Krishnasamy,Peter Vistisenundational due to the exceedingly basic nature of the design choices, allowing to infer what could be a minimal performance that can be obtained with image-based learning in malware detection..The performance of . evaluated on over 158k apps demonstrates that, while simple, our approach is effective
26#
發(fā)表于 2025-3-26 00:42:34 | 只看該作者
Mariana Carvalho,Daniel Rocha,Vítor Carvalhor limitation of the first attack scenario is that a simple pre-processing step can remove the perturbations before classification. For the second attack scenario, it is hard to maintain the original malware’s executability and functionality. In this work, we provide literature review on existing mal
27#
發(fā)表于 2025-3-26 05:17:30 | 只看該作者
28#
發(fā)表于 2025-3-26 08:37:36 | 只看該作者
STAN: Synthetic Network Traffic Generation with Generative Neural Models. We evaluate the performance of . in terms of quality of data generated, by training it on both a simulated dataset and a real network traffic data set. Finally, to answer the question—can real network traffic data be substituted with synthetic data to train models of comparable accuracy?—we train
29#
發(fā)表于 2025-3-26 16:21:32 | 只看該作者
Few-Sample Named Entity Recognition for Security Vulnerability Reports by?Fine-Tuning Pre-trained Lalar, we investigate the performance of fine-tuning several state-of-the-art pre-trained language models on our small training dataset. The results show that with pre-trained language models and carefully tuned hyperparameters, we have reached or slightly outperformed the state-of-the-art system?[.]
30#
發(fā)表于 2025-3-26 18:11:50 | 只看該作者
: A Simple, yet Effective Deep Learning Approach to Android Malware Detection Based on Image Represeundational due to the exceedingly basic nature of the design choices, allowing to infer what could be a minimal performance that can be obtained with image-based learning in malware detection..The performance of . evaluated on over 158k apps demonstrates that, while simple, our approach is effective
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁阳县| 南丹县| 泽普县| 西乌珠穆沁旗| 云浮市| 惠水县| 自治县| 凌云县| 伊川县| 文水县| 察雅县| 内江市| 邻水| 吉安县| 临泉县| 兴隆县| 云阳县| 通山县| 德兴市| 古交市| 黎川县| 从化市| 密山市| 南宁市| 两当县| 砀山县| 汨罗市| 胶南市| 盐边县| 区。| 收藏| 长兴县| 临颍县| 井研县| 镇雄县| 阜康市| 银川市| 柞水县| 商南县| 大荔县| 吉木萨尔县|