找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dependence in Probability and Statistics; A Survey of Recent R Ernst Eberlein,Murad S. Taqqu Book 1986 Springer Science+Business Media New

[復制鏈接]
樓主: Helmet
31#
發(fā)表于 2025-3-26 20:57:06 | 只看該作者
32#
發(fā)表于 2025-3-27 02:58:35 | 只看該作者
H. Quintard,J.-C. Orban,C. Ichai integers . = ...,?1, 0.1,... . .(.) is a stationary renewal reward process with large inter-renewal intervals, while .(.) is a non-stationary process that takes the value zero except at some rare instants . where it achieves extremely high values.
33#
發(fā)表于 2025-3-27 08:18:21 | 只看該作者
Drugs and the Inheritance of Behaviorince the applications are diverse, references are scattered in the literature. The purpose of this bibliographical guide is to . many of the important references to the subject. Relevant references to some related topics are also included. Although this is definitely not a comprehensive bibliography
34#
發(fā)表于 2025-3-27 10:24:24 | 只看該作者
35#
發(fā)表于 2025-3-27 14:02:10 | 只看該作者
https://doi.org/10.1007/978-3-030-64904-3 a result that nowadays often would be called a functional central limit theorem (FCLT). At present the term “invariance principle” generally stands as a synonym for an approximation theorem: A given process, such as a partial sum process, an empirical process, an extremal process, a U-statistic, et
36#
發(fā)表于 2025-3-27 18:18:44 | 只看該作者
Semantic Digital Twins for Retail Logisticsor martingales starting with a martingale version of Lindeberg’s proof of the classical CLT and going up to FCLT’s for continuous time local martingales known through the work of Rebolledo, Liptser and Shiryayev, and Helland.
37#
發(fā)表于 2025-3-28 00:58:35 | 只看該作者
https://doi.org/10.1007/978-3-030-88662-2 of the partial sum process S(t) = Σ. x.. Essentially three types of results are known: strong laws of large numbers (SLLNs), central limit theorems (CLTs) and laws of the iterated logarithm (LILs). All three of them as well as a number of refinements such as the functional versions of the last two
38#
發(fā)表于 2025-3-28 03:42:52 | 只看該作者
39#
發(fā)表于 2025-3-28 09:25:42 | 只看該作者
40#
發(fā)表于 2025-3-28 10:59:21 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 21:52
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
商洛市| 吴旗县| 合山市| 五河县| 宜君县| 丰都县| 登封市| 广元市| 仁怀市| 新乡市| 四平市| 大安市| 新宁县| 苏尼特右旗| 六枝特区| 冷水江市| 绍兴市| 台北县| 夏邑县| 客服| 公安县| 繁峙县| 永德县| 丹阳市| 文山县| 吉木萨尔县| 南召县| 屏南县| 台东市| 屏南县| 闵行区| 志丹县| 阿合奇县| 洛浦县| 庆云县| 湟源县| 镇赉县| 汾阳市| 庐江县| 崇义县| 德庆县|