找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dependable Computing – EDCC 2022 Workshops; SERENE, DREAMS, AI4R Stefano Marrone,Martina De Sanctis,Valeria Vittori Conference proceedings

[復(fù)制鏈接]
樓主: 落后的煤渣
21#
發(fā)表于 2025-3-25 04:15:45 | 只看該作者
Railway Digital Twins and?Artificial Intelligence: Challenges and?Design Guidelinesesent a promising paradigm to enhance the predictability, safety, and reliability of cyber-physical systems. They can play a key role in different domains, as it is also witnessed by several ongoing standardisation activities. However, several challenging issues have to be faced in order to effectiv
22#
發(fā)表于 2025-3-25 10:00:07 | 只看該作者
23#
發(fā)表于 2025-3-25 13:41:29 | 只看該作者
24#
發(fā)表于 2025-3-25 18:07:37 | 只看該作者
25#
發(fā)表于 2025-3-25 20:26:26 | 只看該作者
The Theory of Catastrophes Before Poincaréromising technique towards safer autonomous systems. Although hazard generation and modularisation are not easy, we argue that STPA provides a different view on safety which aligns much better with an autonomous system view.
26#
發(fā)表于 2025-3-26 03:35:57 | 只看該作者
https://doi.org/10.1007/978-3-662-06796-3ature on specific parameters, which are then re-sampled and used to generate new curves. The model is analyzed in different practice-relevant scenarios and shows potential for improving condition monitoring methods.
27#
發(fā)表于 2025-3-26 04:38:43 | 只看該作者
28#
發(fā)表于 2025-3-26 11:54:56 | 只看該作者
29#
發(fā)表于 2025-3-26 13:54:22 | 只看該作者
30#
發(fā)表于 2025-3-26 19:20:02 | 只看該作者
Railway Digital Twins and?Artificial Intelligence: Challenges and?Design Guidelinesntified, with interoperability being the most discussed challenge. One difficulty is to transmit operational data in real-time from edge systems to the cloud in order to achieve timely decision making. We also provide some guidelines to support the design of DTs with a focus on machine learning for railway maintenance.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海兴县| 陇川县| 桦川县| 高密市| 大关县| 南平市| 微博| 天台县| 敦煌市| 台山市| 凤凰县| 宣恩县| 临高县| 赞皇县| 武川县| 尖扎县| 新野县| 巴林左旗| 蚌埠市| 望江县| 祁阳县| 左贡县| 来安县| 宜都市| 美姑县| 盐源县| 新河县| 肃宁县| 宁南县| 佛山市| 新乡县| 墨玉县| 西宁市| 滨州市| 宝丰县| 保德县| 喜德县| 东城区| 庆安县| 东阿县| 揭阳市|