找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Demand Prediction in Retail; A Practical Guide to Maxime C. Cohen,Paul-Emile Gras,Renyu Zhang Textbook 2022 The Editor(s) (if applicable) a

[復(fù)制鏈接]
查看: 16775|回復(fù): 41
樓主
發(fā)表于 2025-3-21 17:04:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Demand Prediction in Retail
副標(biāo)題A Practical Guide to
編輯Maxime C. Cohen,Paul-Emile Gras,Renyu Zhang
視頻videohttp://file.papertrans.cn/266/265041/265041.mp4
概述Covers the entire process of demand prediction for any business setting.Discusses all the steps required in a real-world implementation.Includes additional material to assist the learning experience
叢書(shū)名稱(chēng)Springer Series in Supply Chain Management
圖書(shū)封面Titlebook: Demand Prediction in Retail; A Practical Guide to Maxime C. Cohen,Paul-Emile Gras,Renyu Zhang Textbook 2022 The Editor(s) (if applicable) a
描述.From data collection to evaluation and visualization of prediction results, this book provides a comprehensive overview of the process of predicting demand for retailers. Each step is illustrated with the relevant code and implementation details to demystify how historical data can be leveraged to predict future demand. The tools and methods presented can be applied to most retail settings, both online and brick-and-mortar, such as fashion, electronics, groceries, and furniture...This book is intended to help students in business analytics and data scientists better master how to leverage data for predicting demand in retail applications. It can also be used as a guide for supply chain practitioners who are interested in predicting demand. It enables readers to understand how to leverage data to predict future demand, how to clean and pre-process the data to make it suitable for predictive analytics, what the common caveats are in terms of implementation and how to assess prediction accuracy..
出版日期Textbook 2022
關(guān)鍵詞demand prediction; supply chain analytics; data-driven forecasting; predictive analytics; data science a
版次1
doihttps://doi.org/10.1007/978-3-030-85855-1
isbn_softcover978-3-030-85857-5
isbn_ebook978-3-030-85855-1Series ISSN 2365-6395 Series E-ISSN 2365-6409
issn_series 2365-6395
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Demand Prediction in Retail影響因子(影響力)




書(shū)目名稱(chēng)Demand Prediction in Retail影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Demand Prediction in Retail網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Demand Prediction in Retail網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Demand Prediction in Retail被引頻次




書(shū)目名稱(chēng)Demand Prediction in Retail被引頻次學(xué)科排名




書(shū)目名稱(chēng)Demand Prediction in Retail年度引用




書(shū)目名稱(chēng)Demand Prediction in Retail年度引用學(xué)科排名




書(shū)目名稱(chēng)Demand Prediction in Retail讀者反饋




書(shū)目名稱(chēng)Demand Prediction in Retail讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:14:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:19:51 | 只看該作者
Common Demand Prediction Methods,n explain how to properly structure the dataset. We next discuss two approaches in terms of data aggregation: the centralized approach (which combines the data across all SKUs and estimate a single model) and the decentralized approach (which estimates a different model for each SKU by solely relyin
地板
發(fā)表于 2025-3-22 07:34:03 | 只看該作者
Tree-Based Methods,ypes of methods: Decision Tree, Random Forest, and Gradient Boosted Tree. We apply these methods under both the centralized and decentralized approaches. For each method, we briefly discuss the underlying mathematical framework, present a common practical way to select the parameters, and detail the
5#
發(fā)表于 2025-3-22 08:50:50 | 只看該作者
Clustering Techniques, aggregate the data across different SKUs to improve the prediction accuracy. On the one hand, aggregating sales data across several SKUs will help reduce the noise and would allow the model to rely on a larger number of observations. On the other hand, this will overlook the fact that each SKU bear
6#
發(fā)表于 2025-3-22 14:05:37 | 只看該作者
More Advanced Methods,is an open-sourced library released by Facebook researchers in 2017. Prophet is a time-series demand prediction method that often performs well on large-scale problems. We explain the method and discuss its implementation both with and without incorporating features. We then present a method that ca
7#
發(fā)表于 2025-3-22 18:43:28 | 只看該作者
Conclusion and Advanced Topics,cs related to demand prediction, such as deep learning methods, transfer learning, and data censoring. For each topic, we provide a number of relevant references for interested readers. We close by discussing several decisions that can be guided by prescriptive analytics tools that rely on demand pr
8#
發(fā)表于 2025-3-23 00:32:12 | 只看該作者
9#
發(fā)表于 2025-3-23 01:54:09 | 只看該作者
10#
發(fā)表于 2025-3-23 06:26:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贡觉县| 博爱县| 潮安县| 邵阳县| 景宁| 泽州县| 民县| 巫溪县| 台北县| 新竹市| 桓仁| 儋州市| 宁阳县| 崇信县| 琼结县| 武夷山市| 年辖:市辖区| 蕲春县| 武邑县| 察隅县| 沂源县| 疏附县| 淳安县| 韩城市| 繁峙县| 龙泉市| 昭通市| 中西区| 高密市| 汉川市| 乐至县| 漠河县| 夹江县| 隆化县| 云霄县| 岑巩县| 镇巴县| 陇川县| 加查县| 都兰县| 台中县|