找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Delay Equations; Functional-, Complex Odo Diekmann,Sjoerd M. Verduyn Lunel,Hanns-Otto Wa Book 1995 Springer Science+Business Media New York

[復(fù)制鏈接]
樓主: 戰(zhàn)神
41#
發(fā)表于 2025-3-28 16:05:11 | 只看該作者
42#
發(fā)表于 2025-3-28 22:50:03 | 只看該作者
https://doi.org/10.1007/978-3-658-23727-1Floquet theory deals with periodic linear systems. Let a strongly continuous semigroup {.(.)}. on a complex Banach space . be given.
43#
發(fā)表于 2025-3-29 02:29:32 | 只看該作者
Die Geschichte hinter diesem BuchLet a strongly continuous semigroup of operators {.(.)}. on a real Banach space . be given. Assume that . is ⊙-reflexive with respect to the semigroup. Consider a .-map G: .→.* on some open set . ? ..
44#
發(fā)表于 2025-3-29 03:21:31 | 只看該作者
Unsere Hoffnungen haben sich nicht erfülltIn this section we use the prototype equation . with a smooth function .: ?→?, in order to illustrate basic results on the long-term behaviour of solutions and on the organization of the phase space. We assume that . satisfies the condition . for negative feedback and that/is bounded from above or from below.
45#
發(fā)表于 2025-3-29 11:13:36 | 只看該作者
46#
發(fā)表于 2025-3-29 15:20:31 | 只看該作者
Linear RFDE as bounded perturbations,Consider the linear autonomous RFDE. where ζ denotes a . × . matrix-valued function whose entries belong to NBV. Alternatively we can write (see I.1.5)
47#
發(fā)表于 2025-3-29 17:12:26 | 只看該作者
Spectral theory,In Chapter I we studied the large time behaviour of solutions of linear retarded functional differential equations. This study was based on the observation that for positive time, the solution .(·;.) of the RFDE . satisfies a renewal equation (I.2.10)
48#
發(fā)表于 2025-3-29 20:13:39 | 只看該作者
Completeness or small solutions?,In Section 1.5 the large time behaviour of solutions of a linear retarded functional differential equation. was studied. Using the renewal equation and the inverse Laplace transform, we found the following representation [see (I.5.3)] for the solution of (1.1): . where
49#
發(fā)表于 2025-3-30 01:00:18 | 只看該作者
50#
發(fā)表于 2025-3-30 06:39:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大新县| 托克逊县| 新绛县| 康乐县| 德庆县| 梅河口市| 沅江市| 许昌县| 通辽市| 双桥区| 和龙市| 黄大仙区| 莆田市| 高州市| 屏东市| 长垣县| 安国市| 偃师市| 巴塘县| 十堰市| 长寿区| 普安县| 萨迦县| 九龙县| 遂宁市| 长宁县| 寿光市| 睢宁县| 大名县| 江华| 年辖:市辖区| 临高县| 余姚市| 拜城县| 汶川县| 油尖旺区| 莱西市| 尚义县| 万安县| 房产| 肥城市|