找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Delay Differential Equations; Recent Advances and David E. Gilsinn,Tamás Kalmár-Nagy,Balakumar Balac Book 20091st edition Springer-Verlag

[復(fù)制鏈接]
樓主: 能干
41#
發(fā)表于 2025-3-28 16:52:02 | 只看該作者
42#
發(fā)表于 2025-3-28 19:14:21 | 只看該作者
Lyapunov-Krasovskii Functional Approach for Coupled Differential-Difference Equations with Multiple neutral type, as well as singular systems, can all be considered as special cases of coupled DDEs. The coupled DDE formulation is especially effective when a system has a large number of state variables, but only a few of them involve time delays. In this chapter, the stability of such systems is s
43#
發(fā)表于 2025-3-29 01:34:11 | 只看該作者
44#
發(fā)表于 2025-3-29 06:38:08 | 只看該作者
45#
發(fā)表于 2025-3-29 10:08:37 | 只看該作者
Stability Analysis and Control of Linear Periodic Delayed Systems Using Chebyshev and Temporal Finis represented by linear time-periodic delay-differential equations using the Chebyshev and temporal finite element analysis (TFEA) techniques. Here, the analysis and examples assume that there is a single fixed discrete delay, which is equal to the principal period. Two Chebyshev-based methods, Cheb
46#
發(fā)表于 2025-3-29 12:17:33 | 只看該作者
Systems with Periodic Coefficients and Periodically Varying Delays: Semidiscretization-Based Stabildically varying. The stability of periodic solutions of these systems are analyzed by using the semidiscretization method. By employing this method, the periodic coefficients and the delay terms are approximated as constants over a time interval, and the delay differential system is reduced to a set
47#
發(fā)表于 2025-3-29 17:22:51 | 只看該作者
Bifurcations, Center Manifolds, and Periodic Solutions,rential equations (DDEs) usually have parameters in their formulation. How the nature of the solutions change as the parameters vary is crucial to understanding the underlying physical processes. When the DDE is reduced, at an equilibrium point, to leading linear terms and the remaining nonlinear te
48#
發(fā)表于 2025-3-29 20:09:43 | 只看該作者
Center Manifold Analysis of the Delayed Lienard Equation, bifurcation is established based on the reduction of the infinite-dimensional problem onto a twodimensional center manifold. Numerics based on DDE-Biftool are given to compare with the authors’ theoretical calculation. The Liénard type sunflower equation is discussed as an illustrative example base
49#
發(fā)表于 2025-3-30 03:20:00 | 只看該作者
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 00:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德保县| 武邑县| 西峡县| 雅安市| 奉贤区| 惠来县| 阜城县| 黄平县| 澄江县| 海阳市| 莱阳市| 金堂县| 衡水市| 德化县| 康保县| 广饶县| 皋兰县| 广宗县| 洪雅县| 张掖市| 长治县| 汾西县| 营山县| 合川市| 德州市| 阿鲁科尔沁旗| 德保县| 安阳县| 祁门县| 日喀则市| 台南县| 邻水| 桓仁| 湛江市| 唐河县| 尖扎县| 葫芦岛市| 壤塘县| 五寨县| 镇巴县| 伊金霍洛旗|