找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Degeneration of Abelian Varieties; Gerd Faltings,Ching-Li Chai Book 1990 Springer-Verlag Berlin Heidelberg 1990 Hecke operator.Moduli Raum

[復(fù)制鏈接]
樓主: Taylor
21#
發(fā)表于 2025-3-25 03:52:32 | 只看該作者
22#
發(fā)表于 2025-3-25 07:30:11 | 只看該作者
Die Altersverteilung der Anorexia nervosa,eration of various spectral sequences. Our method, developed in [F 1], is based on the Bernstein-Gelfand-Gelfand (abbreviated as BGG) resolution (cf. [BGG]), Mumford’s extension of equivariant vector bundles to toroidal compactifications (cf. [Mum 6]) and Deligne’s Hodge theory (cf. [D 2], [D 3]). M
23#
發(fā)表于 2025-3-25 13:29:46 | 只看該作者
Die Steigerung der Regelungseffizienzave proved any serious theorem here. Difficulties arise on two sides: in geometry, with the Lefschetz trace formula for Hecke correspondences and in the harmonic analysis, with the Selberg trace formula for automorphic representations of the symplectic group. Both call for further work.
24#
發(fā)表于 2025-3-25 16:48:42 | 只看該作者
25#
發(fā)表于 2025-3-25 22:40:12 | 只看該作者
Ingeborg Nütten,Peter SauermannWe first outline in general terms the various steps of our construction of the toroidal compactification of .., denoted by ... Precise definitions will be given in due course. These steps are:
26#
發(fā)表于 2025-3-26 01:48:02 | 只看該作者
Preliminaries,An . is a group scheme . : . → . which is smooth, proper with (geometrically) connected fibres. A basic fact is that an abelian scheme is actually a commutative group scheme.
27#
發(fā)表于 2025-3-26 04:56:44 | 只看該作者
28#
發(fā)表于 2025-3-26 09:28:07 | 只看該作者
29#
發(fā)表于 2025-3-26 12:58:05 | 只看該作者
978-3-642-08088-3Springer-Verlag Berlin Heidelberg 1990
30#
發(fā)表于 2025-3-26 17:24:13 | 只看該作者
Degeneration of Polarized Abelian Varieties,g the following complex analogue. Let . = (.*)., . = .., where .* denotes the punctured unit disk and . the unit disk in ?. Let .. be a family of abelian varieties of dimension . over ... In general, this family may degenerate over ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 18:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖远县| 榆树市| 东乡| 东城区| 凉山| 丰都县| 福安市| 伊春市| 玛沁县| 怀集县| 遵义县| 呼玛县| 吴川市| 平潭县| 永吉县| 舟山市| 古交市| 成都市| 苏州市| 铜梁县| 诏安县| 纳雍县| 霍州市| 济南市| 灌阳县| 泗洪县| 唐河县| 奇台县| 怀安县| 诏安县| 崇义县| 金沙县| 湘西| 台湾省| 四子王旗| 舞阳县| 宝兴县| 芦溪县| 通州市| 开原市| 于都县|