找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Degenerate Diffusions; Wei-Ming Ni,L. A. Peletier,J. L. Vazquez Conference proceedings 1993 Springer-Verlag New York, Inc. 1993 bounded me

[復(fù)制鏈接]
樓主: 會議記錄
11#
發(fā)表于 2025-3-23 10:14:36 | 只看該作者
https://doi.org/10.1007/978-3-540-71283-1This paper is a sequel to our paper [OU] where we investigated questions concerning solvability and asymptotic behavior of solutions to the mean curvature evolution problem. where Ω is a bounded domain in .., . ≥ 2, with C. boundary ?Ω, . is the mean curvature operator.
12#
發(fā)表于 2025-3-23 17:44:46 | 只看該作者
https://doi.org/10.1007/978-3-540-71283-1We shall be concerned with continuation and limit behavior as . → ∞ for solutions of the quasi-variational system
13#
發(fā)表于 2025-3-23 21:49:50 | 只看該作者
14#
發(fā)表于 2025-3-23 23:44:24 | 只看該作者
15#
發(fā)表于 2025-3-24 02:50:21 | 只看該作者
On the Harnack Inequality for Non-Negative Solutions of Singular Parabolic Equations,This note is to announce some new results and techniques in the theory of singular parabolic equations of the type
16#
發(fā)表于 2025-3-24 07:40:49 | 只看該作者
17#
發(fā)表于 2025-3-24 13:36:49 | 只看該作者
18#
發(fā)表于 2025-3-24 18:17:44 | 只看該作者
19#
發(fā)表于 2025-3-24 20:00:27 | 只看該作者
Long-Time Behaviour of Solutions of Quasilinear Parabolic Equations, . . In this note, we report on some joint work with Albert Milani concerning the existence and long-time behaviour of solutions to certain quasilinear parabolic initial-boundary value problems.
20#
發(fā)表于 2025-3-25 02:45:48 | 只看該作者
,Spike-Layers in Semilinear Elliptic Singular Perturbation Problems?,The purpose of this expository paper is to describe a new method, introduced in a series of papers [LNT], [NT1,2], [NPT] and [J], in handling “spikes” (or “point-condensation” phenomena) for singularly perturbed semilinear elliptic equations of the form.where . is the Laplace operator in .., and ε is a small positive number.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 12:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
聂拉木县| 永丰县| 南川市| 越西县| 汶川县| 麻栗坡县| 平南县| 阜阳市| 普定县| 株洲县| 额尔古纳市| 磐石市| 保山市| 黄山市| 咸丰县| 太白县| 弥勒县| 宝鸡市| 丹凤县| 独山县| 泾川县| 佛教| 普陀区| 荆州市| 河源市| 麻江县| 措美县| 二手房| 平塘县| 临沧市| 潮安县| 都昌县| 武冈市| 大丰市| 翁牛特旗| 偃师市| 枣阳市| 苏尼特右旗| 兴宁市| 石阡县| 通许县|