找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deformations of Surface Singularities; András Némethi,ágnes Szilárd Book 2013 Springer-Verlag Berlin Heidelberg 2013 algebraic geometry.lo

[復(fù)制鏈接]
查看: 11100|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:36:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deformations of Surface Singularities
編輯András Némethi,ágnes Szilárd
視頻videohttp://file.papertrans.cn/265/264854/264854.mp4
概述Special collection of research and review articles on deformations of surface singularities.Introduces material on the newly found relationship with the theory of Stein fillings and symplectic geometr
叢書名稱Bolyai Society Mathematical Studies
圖書封面Titlebook: Deformations of Surface Singularities;  András Némethi,ágnes Szilárd Book 2013 Springer-Verlag Berlin Heidelberg 2013 algebraic geometry.lo
描述.The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems and examples. ?The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry. This links two main theories of mathematics: low dimensional topology and algebraic geometry.?.The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several open problems. Recently several connections were established with low dimensional topology, symplectic geometry and theory of Stein fillings. This created an intense mathematical activity with spectacular bridges between the two areas. The theory of deformation of singularities is the key object in these connections.? .?.
出版日期Book 2013
關(guān)鍵詞algebraic geometry; low dimensional topology; singularity theory
版次1
doihttps://doi.org/10.1007/978-3-642-39131-6
isbn_softcover978-3-662-52469-5
isbn_ebook978-3-642-39131-6Series ISSN 1217-4696 Series E-ISSN 2947-9460
issn_series 1217-4696
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書目名稱Deformations of Surface Singularities影響因子(影響力)




書目名稱Deformations of Surface Singularities影響因子(影響力)學(xué)科排名




書目名稱Deformations of Surface Singularities網(wǎng)絡(luò)公開度




書目名稱Deformations of Surface Singularities網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deformations of Surface Singularities被引頻次




書目名稱Deformations of Surface Singularities被引頻次學(xué)科排名




書目名稱Deformations of Surface Singularities年度引用




書目名稱Deformations of Surface Singularities年度引用學(xué)科排名




書目名稱Deformations of Surface Singularities讀者反饋




書目名稱Deformations of Surface Singularities讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:35:28 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:41:20 | 只看該作者
地板
發(fā)表于 2025-3-22 05:00:30 | 只看該作者
Calculating Milnor Numbers and Versal Component Dimensions from P-Resolution Fans,We use Altmann’s toric fan description of P-resolutions [1] to formulate a new description of deformation theory invariants for two-dimensional cyclic quotient singularities. In particular, we show how to calculate the dimensions of the (reduced) versal base space components as well as Milnor numbers of smoothings over them.
5#
發(fā)表于 2025-3-22 12:00:29 | 只看該作者
Some Meeting Points of Singularity Theory and Low Dimensional Topology,We review some basic facts which connect the deformation theory of normal surface singularities with the topology of their links. The presentation contains some explicit descriptions for certain families of singularities (cyclic quotients, sandwiched singularities).
6#
發(fā)表于 2025-3-22 16:53:21 | 只看該作者
7#
發(fā)表于 2025-3-22 17:23:55 | 只看該作者
8#
發(fā)表于 2025-3-22 21:26:46 | 只看該作者
9#
發(fā)表于 2025-3-23 01:28:08 | 只看該作者
Negative Deformations of Toric Singularities that are Smooth in Codimension Two,ormation of the associated toric variety .(σ) that is built from the deformation parameters of multidegree ...The base space is (the germ of) an affine scheme M? that reflects certain possibilities of splitting . := σ [. = 1] into Minkowski summands.
10#
發(fā)表于 2025-3-23 06:10:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 12:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖州| 开鲁县| 永州市| 温宿县| 绥滨县| 泽库县| 阿克苏市| 高台县| 阳原县| 金溪县| 石屏县| 阿坝县| 姜堰市| 晋宁县| 交口县| 宜宾县| 杭州市| 商丘市| 清苑县| 新野县| 汝南县| 馆陶县| 舒兰市| 辰溪县| 左权县| 富裕县| 武汉市| 安仁县| 白朗县| 黄山市| 乐陵市| 镇远县| 忻州市| 乌鲁木齐市| 陇西县| 和硕县| 裕民县| 扶风县| 格尔木市| 赤峰市| 吉木乃县|