找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Defining Enterprise Data and Analytics Strategy; Pragmatic Guidance o Prakash Sah Book 2022 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
查看: 47309|回復(fù): 38
樓主
發(fā)表于 2025-3-21 18:04:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Defining Enterprise Data and Analytics Strategy
副標(biāo)題Pragmatic Guidance o
編輯Prakash Sah
視頻videohttp://file.papertrans.cn/265/264784/264784.mp4
概述First book in the world that provides pragmatic approach to define enterprise data and analytics strategy.Prescribes how to lay down data and analytics foundation that forms the core of enterprise dig
叢書名稱Management for Professionals
圖書封面Titlebook: Defining Enterprise Data and Analytics Strategy; Pragmatic Guidance o Prakash Sah Book 2022 The Editor(s) (if applicable) and The Author(s)
描述This is the first of its kind book that describes key elements of enterprise data and analytics strategy, and prescribes a pragmatic approach to define the strategy for large enterprises. The book is based on successful digital transformation experience of multiple Fortune 500 and other large enterprises. It is estimated that more than 50% of data and analytics initiatives fail globally because of the inherent complexity of such initiatives. Some of the questions that enterprises struggle with are: How to define enterprise data and analytics strategy? What are the key elements that should be considered while doing so? Why one-size-fits-all approach does not work for all enterprises? How to align data and analytics initiative with the business strategy of the CEO? How to establish a futuristic technology and architecture foundation, given the exponential rate of innovation in data and analytics technologies? How to define the right data and analytics organization model? Why data and analytics organization and processes need to be different from other functions? How to manage organizational change to ensure success of data and analytics initiative? How to define a business value meas
出版日期Book 2022
關(guān)鍵詞data and analytics strategy; digital transformation of enterprise; approach to define analytics strate
版次1
doihttps://doi.org/10.1007/978-981-19-5719-2
isbn_softcover978-981-19-5721-5
isbn_ebook978-981-19-5719-2Series ISSN 2192-8096 Series E-ISSN 2192-810X
issn_series 2192-8096
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Defining Enterprise Data and Analytics Strategy影響因子(影響力)




書目名稱Defining Enterprise Data and Analytics Strategy影響因子(影響力)學(xué)科排名




書目名稱Defining Enterprise Data and Analytics Strategy網(wǎng)絡(luò)公開度




書目名稱Defining Enterprise Data and Analytics Strategy網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Defining Enterprise Data and Analytics Strategy被引頻次




書目名稱Defining Enterprise Data and Analytics Strategy被引頻次學(xué)科排名




書目名稱Defining Enterprise Data and Analytics Strategy年度引用




書目名稱Defining Enterprise Data and Analytics Strategy年度引用學(xué)科排名




書目名稱Defining Enterprise Data and Analytics Strategy讀者反饋




書目名稱Defining Enterprise Data and Analytics Strategy讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:51:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:59:29 | 只看該作者
地板
發(fā)表于 2025-3-22 05:57:55 | 只看該作者
https://doi.org/10.1007/978-1-4471-0263-2t importance, data and analytics team also needs to continuously improve their operational efficiency, so that they can deliver value in a consistent and efficient manner. For this, they need to focus on four key areas—(a) people performance, (b) process effectiveness, (c) technology capability, and (d) data maturity.
5#
發(fā)表于 2025-3-22 10:56:29 | 只看該作者
6#
發(fā)表于 2025-3-22 13:25:40 | 只看該作者
7#
發(fā)表于 2025-3-22 18:49:40 | 只看該作者
https://doi.org/10.1007/978-3-642-74244-6an enterprise. Each of these models have their pros and cons, which must be weighed carefully before choosing the best-suited one. Having chosen the optimum model, the next step is to define data and analytics organization structure and processes that are agile, business friendly, and would deliver high business value to the enterprise.
8#
發(fā)表于 2025-3-23 00:51:20 | 只看該作者
https://doi.org/10.1007/978-1-4471-0263-2using only on the hard skills. If the leader does not possess all the required soft skills, data and analytics adoption and maturity in an enterprise may remain low, despite investing large amount of time and money.
9#
發(fā)表于 2025-3-23 01:47:02 | 只看該作者
,First Element of Strategy—Business Capabilities,nalytics strategy, starting with “enterprise churning” or “samudra manthan” and culminating into creating an integrated roadmap to implement the strategy. While laying down the roadmap, inter alia, it is important to understand the typical nature of data and analytics maturity evolution within an enterprise.
10#
發(fā)表于 2025-3-23 06:05:54 | 只看該作者
,Second Element of Strategy—Technology and Architecture,usiness units, functions, regions, and levels within the enterprise. This would help in identifying various architectural options, choosing the best-suited option, and selecting the tools and technologies that would work best for the chosen architectural option.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 12:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广元市| 汪清县| 玉树县| 定州市| 临沧市| 和平县| 建湖县| 麟游县| 榆社县| 上思县| 和田市| 南城县| 巢湖市| 通海县| 昌黎县| 蒙城县| 田林县| 邢台县| 十堰市| 岑巩县| 孝义市| 渑池县| 松潘县| 中西区| 西丰县| 宁乡县| 恩施市| 龙山县| 余庆县| 绵竹市| 都江堰市| 湘阴县| 金门县| 大邑县| 武定县| 南投市| 固安县| 务川| 神农架林区| 贡觉县| 西乌|