找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms; Tome Eftimov,Peter Koro?ec Book 2022 The Editor(s) (if

[復(fù)制鏈接]
樓主: 麻煩
11#
發(fā)表于 2025-3-23 11:20:50 | 只看該作者
Book 2022es?used to analyze?algorithm performance?in a range of common?scenarios, while also addressing?issues that are often overlooked.?In turn, it?shows how these issues can be easily avoided by applying?the?principles?that have produced?Deep Statistical Comparison and its variants. The focus is on statis
12#
發(fā)表于 2025-3-23 17:08:56 | 只看該作者
Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms978-3-030-96917-2Series ISSN 1619-7127 Series E-ISSN 2627-6461
13#
發(fā)表于 2025-3-23 18:04:47 | 只看該作者
https://doi.org/10.1007/978-90-481-9106-2timization algorithm with the performances of other, state-of-the-art algorithms. Additionally, there is a brief explanation of all the chapters to enable the reader to become acquainted with the scientific content of the book.
14#
發(fā)表于 2025-3-24 00:05:39 | 只看該作者
15#
發(fā)表于 2025-3-24 05:26:23 | 只看該作者
16#
發(fā)表于 2025-3-24 07:39:37 | 只看該作者
https://doi.org/10.1007/978-3-031-06916-1k. We give an overview of the basic terms used in statistics, starting with descriptive statistics and a special focus on hypothesis testing. At the end, we provide guidelines for which statistical test should be selected, depending on the benchmarking scenario that is analyzed.
17#
發(fā)表于 2025-3-24 14:08:25 | 只看該作者
A Holistic Approach to School SuccessFirst, the most commonly used approach for a statistical comparison is presented, followed by a recently published approach, known as the Deep Statistical Comparison. Both approaches are discussed using benchmarking scenarios introduced in the statistical analysis chapter (i.e., the single-problem and multiple-problem scenarios).
18#
發(fā)表于 2025-3-24 16:52:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:26:31 | 只看該作者
20#
發(fā)表于 2025-3-25 00:06:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 10:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桂东县| 松溪县| 垣曲县| 宁波市| 正阳县| 南丹县| 南城县| 怀仁县| 通渭县| 锡林郭勒盟| 恭城| 陇西县| 三明市| 浦江县| 商河县| 大荔县| 武乡县| 开阳县| 泽库县| 西昌市| 安庆市| 崇阳县| 建水县| 洱源县| 南安市| 金沙县| 衡阳县| 微山县| 大连市| 延津县| 县级市| 寿阳县| 静乐县| 灵川县| 敦化市| 清涧县| 永胜县| 玉屏| 大丰市| 桐庐县| 仁化县|