找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Reinforcement Learning with Python; With PyTorch, Tensor Nimish Sanghi Book 20211st edition Nimish Sanghi 2021 Artificial Intelligence

[復(fù)制鏈接]
查看: 19489|回復(fù): 47
樓主
發(fā)表于 2025-3-21 19:03:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Reinforcement Learning with Python
副標(biāo)題With PyTorch, Tensor
編輯Nimish Sanghi
視頻videohttp://file.papertrans.cn/265/264660/264660.mp4
概述Explains deep reinforcement learning implementation using TensorFlow, PyTorch and OpenAI Gym..Covers deep reinforcement implementation using CNN and deep q-networks.Explains deep-q learning and policy
圖書封面Titlebook: Deep Reinforcement Learning with Python; With PyTorch, Tensor Nimish Sanghi Book 20211st edition Nimish Sanghi 2021 Artificial Intelligence
描述Deep reinforcement learning is a fast-growing discipline that is making a significant impact in fields of autonomous vehicles, robotics, healthcare, finance, and many more. This book covers deep reinforcement learning using deep-q learning and policy gradient models with coding exercise..You‘ll begin by reviewing the Markov decision processes, Bellman equations, and dynamic programming that form the core concepts and foundation of deep reinforcement learning. Next, you‘ll study model-free learning followed by function approximation using neural networks and deep learning. This is followed by various deep reinforcement learning algorithms such as deep q-networks, various flavors of actor-critic methods, and other policy-based methods.?.You‘ll also look at exploration vs exploitation dilemma, a key consideration in reinforcement learning algorithms, along with Monte Carlo tree search (MCTS), which played a key role inthe success of AlphaGo. The final chapters conclude with deep reinforcement learning implementation using popular deep learning frameworks such as TensorFlow and PyTorch. In the end, you‘ll understand deep reinforcement learning along with deep q networks and policy grad
出版日期Book 20211st edition
關(guān)鍵詞Artificial Intelligence; Deep Reinforcement Learning; PyTorch; Neural Networks; Robotics; Autonomous Vehi
版次1
doihttps://doi.org/10.1007/978-1-4842-6809-4
isbn_ebook978-1-4842-6809-4
copyrightNimish Sanghi 2021
The information of publication is updating

書目名稱Deep Reinforcement Learning with Python影響因子(影響力)




書目名稱Deep Reinforcement Learning with Python影響因子(影響力)學(xué)科排名




書目名稱Deep Reinforcement Learning with Python網(wǎng)絡(luò)公開度




書目名稱Deep Reinforcement Learning with Python網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Reinforcement Learning with Python被引頻次




書目名稱Deep Reinforcement Learning with Python被引頻次學(xué)科排名




書目名稱Deep Reinforcement Learning with Python年度引用




書目名稱Deep Reinforcement Learning with Python年度引用學(xué)科排名




書目名稱Deep Reinforcement Learning with Python讀者反饋




書目名稱Deep Reinforcement Learning with Python讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:57:44 | 只看該作者
http://image.papertrans.cn/d/image/264660.jpg
板凳
發(fā)表于 2025-3-22 02:48:00 | 只看該作者
https://doi.org/10.1007/978-1-4842-6809-4Artificial Intelligence; Deep Reinforcement Learning; PyTorch; Neural Networks; Robotics; Autonomous Vehi
地板
發(fā)表于 2025-3-22 04:45:01 | 只看該作者
Implementing Continuous Integrationas led to many significant advances that are increasingly getting machines closer to acting the way humans do. In this book, we will start with the basics and finish up with mastering some of the most recent developments in the field. There will be a good mix of theory (with minimal mathematics) and
5#
發(fā)表于 2025-3-22 11:21:24 | 只看該作者
6#
發(fā)表于 2025-3-22 12:53:35 | 只看該作者
Marc Joseph Saugey Restoration,earns a policy π(.| .) that maps states to actions. The agent uses this policy to take an action .?=?. when in state .?=?.. The system transitions to the next time instant of .?+?1. The environment responds to the action (.?=?.) by putting the agent in a new state of .?=?. and providing feedback to
7#
發(fā)表于 2025-3-22 18:17:47 | 只看該作者
8#
發(fā)表于 2025-3-22 21:52:39 | 只看該作者
https://doi.org/10.1007/978-3-642-70880-0rlo approach (MC), and finally using the temporal difference (TD) approach. In all these approaches, we always looked at problems where the state space and actions were both discrete. Only in the previous chapter toward the end did we talk about Q-learning in a continuous state space. We discretized
9#
發(fā)表于 2025-3-23 05:01:22 | 只看該作者
10#
發(fā)表于 2025-3-23 06:18:21 | 只看該作者
What Is the Microsoft HoloLens? a given current policy. In a second step, these estimated values were used to find a better policy by choosing the best action in a given state. These two steps were carried out in a loop again and again until no further improvement in values was observed. In this chapter, we will look at a differe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴堡县| 焉耆| 桐城市| 安徽省| 五原县| 柘荣县| 五华县| 义乌市| 神农架林区| 临猗县| 襄樊市| 同仁县| 宁乡县| 炉霍县| 西藏| 柏乡县| 常宁市| 腾冲县| 陇西县| 尚义县| 莫力| 东港市| 左权县| 玉山县| 和林格尔县| 丹阳市| 淳化县| 孝昌县| 桦南县| 吉木乃县| 陇川县| 修武县| 基隆市| 太谷县| 灌云县| 衡东县| 大新县| 碌曲县| 屏边| 集贤县| 蚌埠市|