找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Reinforcement Learning in Unity; With Unity ML Toolki Abhilash Majumder Book 2021 Abhilash Majumder 2021 Deep Learning.Reinforcement

[復(fù)制鏈接]
查看: 15956|回復(fù): 40
樓主
發(fā)表于 2025-3-21 17:49:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Reinforcement Learning in Unity
副標(biāo)題With Unity ML Toolki
編輯Abhilash Majumder
視頻videohttp://file.papertrans.cn/265/264658/264658.mp4
概述Contains a descriptive view of the core reinforcement learning algorithms involving Unity ML Agents and how they can be leveraged in games to AI create agents.Covers autonomous driving AI with modeled
圖書封面Titlebook: Deep Reinforcement Learning in Unity; With Unity ML Toolki Abhilash Majumder Book 2021 Abhilash Majumder 2021 Deep Learning.Reinforcement
描述.Gain an in-depth overview of reinforcement learning for autonomous agents in game development with Unity..This book starts with an introduction to state-based reinforcement learning algorithms involving Markov models, Bellman equations, and writing custom C# code with the aim of contrasting value and policy-based functions in reinforcement learning. Then, you will move on to path finding and navigation meshes in Unity, setting up the ML Agents Toolkit (including how to install and set up ML agents from the GitHub repository), and installing fundamental machine learning libraries and frameworks (such as Tensorflow). You will learn about: deep learning and work through an introduction to Tensorflow for writing neural networks (including perceptron, convolution, and LSTM networks), Q learning with Unity ML agents, and porting trained neural network models in Unity through the Python-C# API. You will also explore the OpenAI Gym Environment used throughout the book..Deep Reinforcement Learning in Unity. provides a walk-through of the core fundamentals of deep reinforcement learning algorithms, especially variants of the value estimation, advantage, and policy gradient algorithms (inclu
出版日期Book 2021
關(guān)鍵詞Deep Learning; Reinforcement Learning; Tensorflow; Keras; Unity; ML Toolkit; Neural Network; Autonomous Ag
版次1
doihttps://doi.org/10.1007/978-1-4842-6503-1
isbn_softcover978-1-4842-6502-4
isbn_ebook978-1-4842-6503-1
copyrightAbhilash Majumder 2021
The information of publication is updating

書目名稱Deep Reinforcement Learning in Unity影響因子(影響力)




書目名稱Deep Reinforcement Learning in Unity影響因子(影響力)學(xué)科排名




書目名稱Deep Reinforcement Learning in Unity網(wǎng)絡(luò)公開度




書目名稱Deep Reinforcement Learning in Unity網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Reinforcement Learning in Unity被引頻次




書目名稱Deep Reinforcement Learning in Unity被引頻次學(xué)科排名




書目名稱Deep Reinforcement Learning in Unity年度引用




書目名稱Deep Reinforcement Learning in Unity年度引用學(xué)科排名




書目名稱Deep Reinforcement Learning in Unity讀者反饋




書目名稱Deep Reinforcement Learning in Unity讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:37:12 | 只看該作者
Setting Up ML Agents Toolkit,p learning environments where the agents can be trained using state-of-the-art (SOTA) deep RL algorithms, evolutionary and genetic strategies, and other deep learning methods (involving computer vision, synthetic data generation) through a simplified Python API. With the latest release of package ve
板凳
發(fā)表于 2025-3-22 02:26:39 | 只看該作者
地板
發(fā)表于 2025-3-22 06:38:33 | 只看該作者
Deep Reinforcement Learning,everal other algorithms from the actor critic paradigm. However, to fully understand this chapter, we have to understand how to build deep learning networks using Tensorflow and the Keras module. We also have to understand the basic concepts of deep learning and why it is required in the current con
5#
發(fā)表于 2025-3-22 09:58:54 | 只看該作者
Competitive Networks for AI Agents,n overview of adversarial self-play, where an agent has to compete with an adversary to gain rewards. After covering the fundamental topics, we will also be looking at certain simulations using ML Agents, including the Kart game (which we mentioned in the previous chapter). Let us begin with curricu
6#
發(fā)表于 2025-3-22 16:00:54 | 只看該作者
Case Studies in ML Agents,ter research in the AI community by providing a “challenging new benchmark for Agent performance.” The Obstacle Tower is a procedurally generated environment that the agent has to solve with the help of computer vision, locomotion, and generalization. The agent has a goal to reach successive floors
7#
發(fā)表于 2025-3-22 20:44:47 | 只看該作者
ement Learning in Unity. provides a walk-through of the core fundamentals of deep reinforcement learning algorithms, especially variants of the value estimation, advantage, and policy gradient algorithms (inclu978-1-4842-6502-4978-1-4842-6503-1
8#
發(fā)表于 2025-3-22 21:20:22 | 只看該作者
Book 2021. You will also explore the OpenAI Gym Environment used throughout the book..Deep Reinforcement Learning in Unity. provides a walk-through of the core fundamentals of deep reinforcement learning algorithms, especially variants of the value estimation, advantage, and policy gradient algorithms (inclu
9#
發(fā)表于 2025-3-23 02:11:32 | 只看該作者
10#
發(fā)表于 2025-3-23 07:42:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 04:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙坪坝区| 彰化县| 翁牛特旗| 杭州市| 革吉县| 阜宁县| 云安县| 阜新市| 兴隆县| 布尔津县| 克拉玛依市| 安塞县| 邯郸市| 施秉县| 昌宁县| 荔浦县| 镇江市| 雅江县| 商城县| 木里| 曲阜市| 维西| 塔河县| 平远县| 同心县| 龙游县| 惠来县| 百色市| 阿坝| 工布江达县| 泗水县| 开封县| 龙门县| 宣汉县| 当阳市| 蚌埠市| 屏东市| 比如县| 仁怀市| 深圳市| 嘉荫县|