找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Reinforcement Learning for Wireless Networks; F. Richard Yu,Ying He Book 2019 The Author(s), under exclusive license to Springer Natu

[復(fù)制鏈接]
查看: 37684|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:48:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Reinforcement Learning for Wireless Networks
編輯F. Richard Yu,Ying He
視頻videohttp://file.papertrans.cn/265/264657/264657.mp4
叢書名稱SpringerBriefs in Electrical and Computer Engineering
圖書封面Titlebook: Deep Reinforcement Learning for Wireless Networks;  F. Richard Yu,Ying He Book 2019 The Author(s), under exclusive license to Springer Natu
描述.This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance.?Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless?networks and mobile social networks. Simulation results with different network parameters are?presented to show the effectiveness of the proposed scheme...?There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement?learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent?projects with big data (e.g., AlphaGo), and gets quite good results....?Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer?scientists, programmers, and policy makers will also find this brief to be a useful tool.?.
出版日期Book 2019
關(guān)鍵詞Deep reinforcement learning; reinforcement learning; deep learning; wireless networks; caching; mobile ed
版次1
doihttps://doi.org/10.1007/978-3-030-10546-4
isbn_softcover978-3-030-10545-7
isbn_ebook978-3-030-10546-4Series ISSN 2191-8112 Series E-ISSN 2191-8120
issn_series 2191-8112
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Deep Reinforcement Learning for Wireless Networks影響因子(影響力)




書目名稱Deep Reinforcement Learning for Wireless Networks影響因子(影響力)學(xué)科排名




書目名稱Deep Reinforcement Learning for Wireless Networks網(wǎng)絡(luò)公開度




書目名稱Deep Reinforcement Learning for Wireless Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Reinforcement Learning for Wireless Networks被引頻次




書目名稱Deep Reinforcement Learning for Wireless Networks被引頻次學(xué)科排名




書目名稱Deep Reinforcement Learning for Wireless Networks年度引用




書目名稱Deep Reinforcement Learning for Wireless Networks年度引用學(xué)科排名




書目名稱Deep Reinforcement Learning for Wireless Networks讀者反饋




書目名稱Deep Reinforcement Learning for Wireless Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:58:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:25:22 | 只看該作者
地板
發(fā)表于 2025-3-22 07:36:26 | 只看該作者
https://doi.org/10.1007/978-3-030-10546-4Deep reinforcement learning; reinforcement learning; deep learning; wireless networks; caching; mobile ed
5#
發(fā)表于 2025-3-22 11:46:12 | 只看該作者
6#
發(fā)表于 2025-3-22 16:06:38 | 只看該作者
SpringerBriefs in Electrical and Computer Engineeringhttp://image.papertrans.cn/d/image/264657.jpg
7#
發(fā)表于 2025-3-22 18:49:55 | 只看該作者
8#
發(fā)表于 2025-3-22 23:33:13 | 只看該作者
Reinforcement Learning and Deep Reinforcement Learning,In order to better understand state-of-the-art reinforcement learning agent, deep .-network, a brief review of reinforcement learning and .-learning are first described. Then recent advances of deep .-network are presented, and double deep .-network and dueling deep .-network that go beyond deep .-network are also given.
9#
發(fā)表于 2025-3-23 04:31:46 | 只看該作者
10#
發(fā)表于 2025-3-23 07:02:12 | 只看該作者
Deep Reinforcement Learning for Wireless Networks978-3-030-10546-4Series ISSN 2191-8112 Series E-ISSN 2191-8120
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 15:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
治县。| 玉树县| 东乌珠穆沁旗| 无棣县| 嘉荫县| 商河县| 临泽县| 农安县| 平乐县| 沧州市| 六安市| 郎溪县| 杭州市| 德州市| 湟源县| 区。| 勐海县| 新宾| 吕梁市| 漾濞| 刚察县| 分宜县| 临猗县| 华亭县| 南靖县| 称多县| 威海市| 汾西县| 浠水县| 鲜城| 重庆市| 广宁县| 宝应县| 宜章县| 马公市| 德清县| 宣城市| 永胜县| 新乐市| 包头市| 淮安市|