找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Reinforcement Learning; Frontiers of Artific Mohit Sewak Book 2019 Springer Nature Singapore Pte Ltd. 2019 Reinforcement Learning.Deep

[復(fù)制鏈接]
樓主: GLOAT
11#
發(fā)表于 2025-3-23 12:39:40 | 只看該作者
12#
發(fā)表于 2025-3-23 15:03:56 | 只看該作者
Matthias Preis,Friedrich Summanne very popular applications like AlphaGo. We will also introduce the concept of General AI in this chapter and discuss how these models have been instrumental in inspiring hopes of achieving General AI through these Deep Reinforcement Learning model applications.
13#
發(fā)表于 2025-3-23 18:01:38 | 只看該作者
Der Kinder- und Jugendfilm von 1900 bis 1945nd TensorFlow for our deep learning models. We have also used the OpenAI gym for instantiating standardized environments to train and test out agents. We use the CartPole environment from the gym for training our model.
14#
發(fā)表于 2025-3-24 00:07:34 | 只看該作者
Der Kinder- und Jugendfilm von 1900 bis 1945vantage” baseline implementation of the model with deep learning-based approximators, and take the concept further to implement a parallel implementation of the deep learning-based advantage actor-critic algorithm in the synchronous (A2C) and the asynchronous (A3C) modes.
15#
發(fā)表于 2025-3-24 05:20:03 | 只看該作者
16#
發(fā)表于 2025-3-24 06:55:15 | 只看該作者
17#
發(fā)表于 2025-3-24 13:25:21 | 只看該作者
Temporal Difference Learning, SARSA, and Q-Learning, concepts of the TD Learning, SARSA, and Q-Learning. Also, since Q-Learning is an off-policy algorithm, so it uses different mechanisms for the behavior as opposed to the estimation policy. So, we will also cover the epsilon-greedy and some other similar algorithms that can help us explore the different actions in an off-policy approach.
18#
發(fā)表于 2025-3-24 15:23:40 | 只看該作者
Introduction to Reinforcement Learning, ahead into some advanced topics. We would also discuss how the agent learns to take the best action and the policy for learning the same. We will also learn the difference between the On-Policy and the Off-Policy methods.
19#
發(fā)表于 2025-3-24 20:01:45 | 只看該作者
Coding the Environment and MDP Solution,l create an environment for the grid-world problem such that it is compatible with OpenAI Gym’s environment such that most out-of-box agents could also work on our environment. Next, we will implement the value iteration and the policy iteration algorithm in code and make them work with our environment.
20#
發(fā)表于 2025-3-24 23:16:58 | 只看該作者
Introduction to Deep Learning, learning network like an MLP-DNN and its internal working. Since many of the Reinforcement Learning algorithm work on game feeds have image/video as input states, we will also cover CNN, the deep learning networks for vision in this chapter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马鞍山市| 广汉市| 镇坪县| 东乌珠穆沁旗| 营口市| 达日县| 大冶市| 天等县| 海原县| 玛多县| 威信县| 天柱县| 垫江县| 荆门市| 新野县| 贡嘎县| 南宁市| 厦门市| 曲沃县| 北安市| 深泽县| 西峡县| 阳泉市| 阜康市| 广饶县| 和田市| 东阳市| 山阳县| 洪泽县| 古田县| 运城市| 桓仁| 绥江县| 通山县| 伊宁县| 茂名市| 余姚市| 南投县| 凌源市| 裕民县| 华宁县|