找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Neuro-Fuzzy Systems with Python; With Case Studies an Himanshu Singh,Yunis Ahmad Lone Book 2020 Himanshu Singh, Yunis Ahmad Lone 2020

[復(fù)制鏈接]
查看: 46017|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:44:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Deep Neuro-Fuzzy Systems with Python
副標(biāo)題With Case Studies an
編輯Himanshu Singh,Yunis Ahmad Lone
視頻videohttp://file.papertrans.cn/265/264650/264650.mp4
概述Explains deep neuro-fuzzy systems with applications and mathematical details.Implementations of all the applications using Python.Covers the recent applications of neuro fuzzy inference systems in ind
圖書(shū)封面Titlebook: Deep Neuro-Fuzzy Systems with Python; With Case Studies an Himanshu Singh,Yunis Ahmad Lone Book 2020 Himanshu Singh, Yunis Ahmad Lone 2020
描述.Gain insight into fuzzy logic and neural networks, and how the integration between the two models makes intelligent systems in the current world. This book simplifies the implementation of fuzzy logic and neural network concepts using Python...You’ll start by walking through the basics of fuzzy sets and relations, and how each member of the set has its own membership function values. You’ll also look at different architectures and models that have been developed, and how rules and reasoning have been defined to make the architectures possible. The book then provides a closer look at neural networks and related architectures, focusing on the various issues neural networks may encounter during training, and how different optimization methods can help you resolve them...In the last section of the book you’ll examine the integrations of fuzzy logics and neural networks, the adaptive neuro fuzzy Inference systems, and various approximations related to the same. You’ll review different types of deep neuro fuzzy classifiers, fuzzy neurons, and the adaptive learning capability of the neural networks. The book concludes by reviewing advanced neuro fuzzy models and applications.?..What You’
出版日期Book 2020
關(guān)鍵詞Fuzzy Logic; Python; Neural Networks; Neuro Fuzzy Inference System; Hybrid Modelling; Fuzzy Sets
版次1
doihttps://doi.org/10.1007/978-1-4842-5361-8
isbn_softcover978-1-4842-5360-1
isbn_ebook978-1-4842-5361-8
copyrightHimanshu Singh, Yunis Ahmad Lone 2020
The information of publication is updating

書(shū)目名稱Deep Neuro-Fuzzy Systems with Python影響因子(影響力)




書(shū)目名稱Deep Neuro-Fuzzy Systems with Python影響因子(影響力)學(xué)科排名




書(shū)目名稱Deep Neuro-Fuzzy Systems with Python網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Deep Neuro-Fuzzy Systems with Python網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Deep Neuro-Fuzzy Systems with Python被引頻次




書(shū)目名稱Deep Neuro-Fuzzy Systems with Python被引頻次學(xué)科排名




書(shū)目名稱Deep Neuro-Fuzzy Systems with Python年度引用




書(shū)目名稱Deep Neuro-Fuzzy Systems with Python年度引用學(xué)科排名




書(shū)目名稱Deep Neuro-Fuzzy Systems with Python讀者反饋




書(shū)目名稱Deep Neuro-Fuzzy Systems with Python讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:00:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:48:38 | 只看該作者
Introduction to Machine Learning,ic, which means the fuzzification process, defuzzification process, defining memberships, etc. is all done manually. With intelligent systems, it is always better to learn most of the things from the data, rather than hard-coding it directly. This area of Fuzzy Inference Systems is where most of the
地板
發(fā)表于 2025-3-22 08:32:39 | 只看該作者
Fuzzy Neural Networks,hat you always get the same kind of inputs. . in neural networks results in networks having Fuzzy Signals, Fuzzy Weights, etc., in which case you are dealing with . This chapter looks at the different architectures of Fuzzy Neural Networks and the components that define them. You will later learn ab
5#
發(fā)表于 2025-3-22 10:40:10 | 只看該作者
Advanced Fuzzy Networks,o know some of the core components that are used in building these systems. This chapter starts by discussing the Fuzzy Clustering method. Then it moves on to genetic algorithms and wraps up by reviewing the most commonly used architectures belonging to the domain of advanced Fuzzy Networks.
6#
發(fā)表于 2025-3-22 13:50:10 | 只看該作者
7#
發(fā)表于 2025-3-22 20:21:53 | 只看該作者
Soziale und wirtschaftliche Voraussetzungen can be performed on them. This chapter also includes a basic introduction to membership functions, which are then explained in detail in the next chapter. Wherever required, Python code is provided for execution purposes.
8#
發(fā)表于 2025-3-22 22:17:40 | 只看該作者
Soziale und wirtschaftliche Voraussetzungenh define the membership values of each element present in a Fuzzy Set. You learned about the different types of membership functions. Later, you learned about the Fuzzy Rules and reasoning approaches that utilize the concepts of membership functions to give various Fuzzy Solutions.
9#
發(fā)表于 2025-3-23 04:49:32 | 只看該作者
10#
發(fā)表于 2025-3-23 07:52:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 21:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金坛市| 潜江市| 兴文县| 黑水县| 长汀县| 隆子县| 永川市| 原阳县| 桑日县| 新丰县| 富阳市| 沂源县| 丰台区| 庆阳市| 新闻| 孝感市| 阿鲁科尔沁旗| 杭州市| 河源市| 苗栗县| 宜城市| 乃东县| 台南县| 西华县| 镇康县| 平山县| 页游| 锡林郭勒盟| 兰西县| 定安县| 榆中县| 双江| 鄂伦春自治旗| 永丰县| 修文县| 舒城县| 额济纳旗| 土默特左旗| 万荣县| 诏安县| 陵川县|