找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Deep Neural Networks and Data for Automated Driving; Robustness, Uncertai Tim Fingscheidt,Hanno Gottschalk,Sebastian Houben Book‘‘‘‘‘‘‘‘ 20

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 12:09:02 | 只看該作者
Invertible Neural Networks for Understanding Semantics of Invariances of CNN Representationsns to (i) expose their semantic meaning, (ii) semantically modify a representation, and (iii) visualize individual learned semantic concepts and invariances. Our invertible approach significantly extends the abilities to understand black-box models by enabling post hoc interpretations of state-of-th
52#
發(fā)表于 2025-3-30 12:34:16 | 只看該作者
Confidence Calibration for Object Detection and Segmentationion of object detection and segmentation models. We examine several network architectures on MS COCO as well as on Cityscapes and show that especially object detection as well as instance segmentation models are intrinsically miscalibrated given the introduced definition of calibration. Using our pr
53#
發(fā)表于 2025-3-30 18:26:03 | 只看該作者
54#
發(fā)表于 2025-3-30 22:39:59 | 只看該作者
A Variational Deep Synthesis Approach for?Perception Validationnd combined with our variational approach we can effectively simulate and test a wide range of additional conditions as, e.g., various illuminations. We can demonstrate that our generative approach produces a better approximation of the spatial object distribution to real datasets, compared to hand-
55#
發(fā)表于 2025-3-31 04:27:07 | 只看該作者
Joint Optimization for DNN Model Compression and Corruption Robustnesstness of the . network by 8.39% absolute mean performance under corruption (mPC) on the Cityscapes dataset, and by 2.93% absolute mPC on the Sim KI-A dataset, while generalizing even to augmentations not seen by the network in the training process. This is achieved with only minor degradations on un
56#
發(fā)表于 2025-3-31 07:01:41 | 只看該作者
https://doi.org/10.1007/978-3-662-39531-8encies to then describe research activities aiming at their detection, quantification, or mitigation. Our work addresses machine learning experts and safety engineers alike: The former ones might profit from the broad range of machine learning topics covered and discussions on limitations of recent
57#
發(fā)表于 2025-3-31 11:31:51 | 只看該作者
58#
發(fā)表于 2025-3-31 16:35:43 | 只看該作者
59#
發(fā)表于 2025-3-31 18:06:41 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卓资县| 泰和县| 太白县| 新和县| 新建县| 阜宁县| 沂源县| 赤水市| 大足县| 襄城县| 中卫市| 湘乡市| 北票市| 宽甸| 营山县| 东山县| 阿巴嘎旗| 汤原县| 洛扎县| 许昌市| 且末县| 石阡县| 云霄县| 南川市| 石渠县| 宜昌市| 宁河县| 项城市| 宁强县| 卓资县| 江达县| 保亭| 紫云| 务川| 玛纳斯县| 苏州市| 石家庄市| 苍溪县| 田东县| 曲麻莱县| 台南县|