找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning: Concepts and Architectures; Witold Pedrycz,Shyi-Ming Chen Book 2020 Springer Nature Switzerland AG 2020 Computational Intel

[復(fù)制鏈接]
查看: 8297|回復(fù): 49
樓主
發(fā)表于 2025-3-21 19:36:06 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning: Concepts and Architectures
編輯Witold Pedrycz,Shyi-Ming Chen
視頻videohttp://file.papertrans.cn/265/264643/264643.mp4
概述Provides a comprehensive and up-to-date overview of deep learning by discussing a range of methodological and algorithmic issues.Addresses implementations and case studies, identifying the best design
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Deep Learning: Concepts and Architectures;  Witold Pedrycz,Shyi-Ming Chen Book 2020 Springer Nature Switzerland AG 2020 Computational Intel
描述This book introduces readers to the fundamental concepts of deep learning and offers practical insights into how this learning paradigm supports automatic mechanisms of structural knowledge representation. It discusses a number of multilayer architectures giving rise to tangible and functionally meaningful pieces of knowledge, and shows how the structural developments have become essential to the successful delivery of competitive practical solutions to real-world problems. The book also demonstrates how the architectural developments, which arise in the setting of deep learning, support detailed learning and refinements to the system design. Featuring detailed descriptions of the current trends in the design and analysis of deep learning topologies, the book offers practical guidelines and presents competitive solutions to various areas of language modeling, graph representation, and forecasting.
出版日期Book 2020
關(guān)鍵詞Computational Intelligence; Machine Learning; Computer Vision; Natural Language Processing; Deep Learnin
版次1
doihttps://doi.org/10.1007/978-3-030-31756-0
isbn_softcover978-3-030-31758-4
isbn_ebook978-3-030-31756-0Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Deep Learning: Concepts and Architectures影響因子(影響力)




書目名稱Deep Learning: Concepts and Architectures影響因子(影響力)學(xué)科排名




書目名稱Deep Learning: Concepts and Architectures網(wǎng)絡(luò)公開度




書目名稱Deep Learning: Concepts and Architectures網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning: Concepts and Architectures被引頻次




書目名稱Deep Learning: Concepts and Architectures被引頻次學(xué)科排名




書目名稱Deep Learning: Concepts and Architectures年度引用




書目名稱Deep Learning: Concepts and Architectures年度引用學(xué)科排名




書目名稱Deep Learning: Concepts and Architectures讀者反饋




書目名稱Deep Learning: Concepts and Architectures讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:39:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:02:30 | 只看該作者
Deep Neural Networks for Corrupted Labels,AR-10, CIFAR-100 and ImageNet datasets and on a large-scale Clothing 1M dataset with inherent label noise. Further, we show that with the different initialization and the regularization of the noise model, we can apply this learning procedure to text classification?tasks as well. We evaluate the per
地板
發(fā)表于 2025-3-22 06:57:48 | 只看該作者
5#
發(fā)表于 2025-3-22 12:11:30 | 只看該作者
6#
發(fā)表于 2025-3-22 14:45:58 | 只看該作者
7#
發(fā)表于 2025-3-22 17:16:55 | 只看該作者
1860-949X current trends in the design and analysis of deep learning topologies, the book offers practical guidelines and presents competitive solutions to various areas of language modeling, graph representation, and forecasting.978-3-030-31758-4978-3-030-31756-0Series ISSN 1860-949X Series E-ISSN 1860-9503
8#
發(fā)表于 2025-3-23 00:04:54 | 只看該作者
9#
發(fā)表于 2025-3-23 04:39:59 | 只看該作者
https://doi.org/10.1007/978-3-322-90228-3ompression. Due to wide availability of high-end processing chips and large datasets, deep learning has gained a lot attention from academia, industries and research centers to solve multitude of problems. Considering the state-of-the-art literature, autoencoders are widely used architectures in man
10#
發(fā)表于 2025-3-23 08:44:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云霄县| 新沂市| 江永县| 镶黄旗| 溧阳市| 东辽县| 新和县| 张家口市| 尼木县| 东丽区| 聊城市| 中超| 盘山县| 长泰县| 五寨县| 阿合奇县| 凉城县| 长阳| 巴塘县| 赤水市| 公主岭市| 商水县| 通州市| 枣阳市| 永修县| 富顺县| 怀仁县| 阿拉善盟| 濉溪县| 樟树市| 武山县| 略阳县| 改则县| 志丹县| 平泉县| 荥经县| 商河县| 西城区| 玉林市| 金坛市| 淄博市|