找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning-Based Face Analytics; Nalini K Ratha,Vishal M. Patel,Rama Chellappa Book 2021 The Editor(s) (if applicable) and The Author(s

[復(fù)制鏈接]
查看: 21624|回復(fù): 58
樓主
發(fā)表于 2025-3-21 16:47:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning-Based Face Analytics
編輯Nalini K Ratha,Vishal M. Patel,Rama Chellappa
視頻videohttp://file.papertrans.cn/265/264640/264640.mp4
概述Is First compiled source on deep learning applied to face image and video analytics.Reflects on Bias in face analytic algorithms using AI methods.Explores on Deepfake attacks in face recognition.Compa
叢書名稱Advances in Computer Vision and Pattern Recognition
圖書封面Titlebook: Deep Learning-Based Face Analytics;  Nalini K Ratha,Vishal M. Patel,Rama Chellappa Book 2021 The Editor(s) (if applicable) and The Author(s
描述.This book provides an overview of different deep learning-based methods for face recognition and related problems. Specifically, the authors present methods based on autoencoders, restricted Boltzmann machines, and deep convolutional neural networks for face detection, localization, tracking, recognition, etc. The authors also discuss merits and drawbacks of available approaches and identifies promising avenues of research in this rapidly evolving field...Even though there have been a number of different approaches proposed in the literature for face recognition based on deep learning methods, there is not a single book available in the literature that gives a complete overview of these methods. The proposed book captures the state of the art in face recognition using various deep learning methods, and it covers a variety of different topics related to face recognition...This book is aimed at graduate students studying electrical engineering and/or computer science.? Biometrics is a course that is widely offered at both undergraduate and graduate levels at many institutions around the world: This book can be used as a textbook for teaching topics related to face recognition. In ad
出版日期Book 2021
關(guān)鍵詞Deep Learning; AI Technique in Face Analysis; Face Recognition; Facial Expression Analysis; Face Detecti
版次1
doihttps://doi.org/10.1007/978-3-030-74697-1
isbn_softcover978-3-030-74699-5
isbn_ebook978-3-030-74697-1Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Deep Learning-Based Face Analytics影響因子(影響力)




書目名稱Deep Learning-Based Face Analytics影響因子(影響力)學(xué)科排名




書目名稱Deep Learning-Based Face Analytics網(wǎng)絡(luò)公開度




書目名稱Deep Learning-Based Face Analytics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning-Based Face Analytics被引頻次




書目名稱Deep Learning-Based Face Analytics被引頻次學(xué)科排名




書目名稱Deep Learning-Based Face Analytics年度引用




書目名稱Deep Learning-Based Face Analytics年度引用學(xué)科排名




書目名稱Deep Learning-Based Face Analytics讀者反饋




書目名稱Deep Learning-Based Face Analytics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:26:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:32:55 | 只看該作者
地板
發(fā)表于 2025-3-22 07:58:04 | 只看該作者
https://doi.org/10.1007/978-3-642-95770-3with only 8% labeling, we can achieve performance very close to that with full-set labeling. In the second problem, we focus on the size of the camera network?and consider how to onboard new cameras?into an existing network with little to no additional supervision. We leverage upon transfer learning
5#
發(fā)表于 2025-3-22 10:15:24 | 只看該作者
Zivil-milit?rische Zusammenarbeitgorithms. The two methods reach different conclusions. While the observational method reports gender and skin color biases, the experimental method?reveals biases due to gender, hair length, age, and facial hair. We also show that our synthetic transects allow for a more straightforward bias analysi
6#
發(fā)表于 2025-3-22 16:03:26 | 只看該作者
7#
發(fā)表于 2025-3-22 17:36:29 | 只看該作者
8#
發(fā)表于 2025-3-22 21:19:58 | 只看該作者
9#
發(fā)表于 2025-3-23 04:11:19 | 只看該作者
10#
發(fā)表于 2025-3-23 05:49:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呈贡县| 宿州市| 黄陵县| 昆明市| 阿鲁科尔沁旗| 苍梧县| 宁明县| 桂阳县| 安乡县| 鱼台县| 云和县| 张家港市| 章丘市| 广宁县| 磴口县| 广昌县| 红安县| 富顺县| 自贡市| 荥阳市| 泸州市| 苏州市| 襄汾县| 上栗县| 通山县| 且末县| 土默特右旗| 怀集县| 东宁县| 衡水市| 洛南县| 新密市| 镇原县| 宁武县| 措美县| 鸡东县| 龙里县| 涿鹿县| 平舆县| 通海县| 伊吾县|