找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning-Based Detection of Catenary Support Component Defect and Fault in High-Speed Railways; Zhigang Liu,Wenqiang Liu,Junping Zhon

[復(fù)制鏈接]
樓主: MAXIM
21#
發(fā)表于 2025-3-25 06:45:06 | 只看該作者
22#
發(fā)表于 2025-3-25 07:29:13 | 只看該作者
2363-5010 ults of the catenary detection.Adopts and improves the advan.This book focuses on the deep learning technologies and their applications in the catenary detection of high-speed railways. As the only source of power for high-speed trains, the catenary‘s service performance directly affects the safe op
23#
發(fā)表于 2025-3-25 13:58:50 | 只看該作者
,Preprocessing of Catenary Support Components’ Images,etection difficulty. In addition, in the process of receiving, transmitting, and processing, the image will also be affected by noise such as electromagnetic interference of the sensor, resulting in a decline in image quality and affecting the detection accuracy.
24#
發(fā)表于 2025-3-25 19:00:24 | 只看該作者
25#
發(fā)表于 2025-3-25 22:17:57 | 只看該作者
26#
發(fā)表于 2025-3-26 00:24:38 | 只看該作者
https://doi.org/10.1007/978-3-531-90356-9asic deep learning frameworks of object detection (e.g., Faster R-CNN, YOLO, and SSD) are introduced in CSC positioning, simultaneous positioning of multiple classes of components with high speed and accuracy is achieved. However, it still faces the following challenges.
27#
發(fā)表于 2025-3-26 08:08:32 | 只看該作者
28#
發(fā)表于 2025-3-26 09:16:43 | 只看該作者
29#
發(fā)表于 2025-3-26 15:42:43 | 只看該作者
Positioning of Catenary Support Components,extract handcrafted features (e.g., SIFT, SURF, and HoG) of the template component image and global catenary image and then adapt the feature-matching approach to locate the target component. These methods can only locate one class component at a time and have low accuracy and efficiency. When the b
30#
發(fā)表于 2025-3-26 17:01:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
漾濞| 胶南市| 江都市| 望谟县| 罗山县| 民和| 仙桃市| 富蕴县| 康保县| 四川省| 清原| 呼图壁县| 平安县| 阳原县| 德令哈市| 安康市| 奉节县| 无棣县| 闸北区| 克山县| 万荣县| 泽普县| 巢湖市| 准格尔旗| 安岳县| 德保县| 武邑县| 江口县| 黑河市| 拉孜县| 永年县| 东安县| 连山| 庆元县| 昂仁县| 泸定县| 佛冈县| 九龙坡区| 得荣县| 德庆县| 田阳县|