找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning with R; Abhijit Ghatak Textbook 2019 Springer Nature Singapore Pte Ltd. 2019 Artificial Intelligence.Statistics.Deep neural

[復(fù)制鏈接]
查看: 33249|回復(fù): 43
樓主
發(fā)表于 2025-3-21 18:28:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning with R
編輯Abhijit Ghatak
視頻videohttp://file.papertrans.cn/265/264636/264636.mp4
概述Offers a hands on approach to deep learning while explaining the theory and mathematical concepts in an intuitive manner.Broadens the understanding of advanced neural networks including ConvNets and S
圖書封面Titlebook: Deep Learning with R;  Abhijit Ghatak Textbook 2019 Springer Nature Singapore Pte Ltd. 2019 Artificial Intelligence.Statistics.Deep neural
描述.?Deep Learning with R introduces deep learning and neural networks using the R programming language. The book builds on the understanding of the theoretical and mathematical constructs and enables the reader to create applications on computer vision, natural language processing and transfer learning.??.The book starts with an introduction to machine learning and moves on to describe the basic architecture, different activation functions, forward propagation, cross-entropy loss and backward propagation of a simple neural network. It goes on to create different code segments to construct deep neural networks. It discusses in detail the initialization of network parameters, optimization techniques, and some of the common issues surrounding neural networks such as dealing with NaNs and the vanishing/exploding gradient problem. Advanced variants of multilayered perceptrons namely, convolutional neural networks and sequence models are explained, followed by application to different use cases. The book makes extensive use of the Keras and TensorFlow frameworks.?.
出版日期Textbook 2019
關(guān)鍵詞Artificial Intelligence; Statistics; Deep neural networks; Regularization and hyper-parameter tuning; Co
版次1
doihttps://doi.org/10.1007/978-981-13-5850-0
isbn_ebook978-981-13-5850-0
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書目名稱Deep Learning with R影響因子(影響力)




書目名稱Deep Learning with R影響因子(影響力)學(xué)科排名




書目名稱Deep Learning with R網(wǎng)絡(luò)公開度




書目名稱Deep Learning with R網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning with R被引頻次




書目名稱Deep Learning with R被引頻次學(xué)科排名




書目名稱Deep Learning with R年度引用




書目名稱Deep Learning with R年度引用學(xué)科排名




書目名稱Deep Learning with R讀者反饋




書目名稱Deep Learning with R讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:53:12 | 只看該作者
Springer Nature Singapore Pte Ltd. 2019
板凳
發(fā)表于 2025-3-22 02:27:13 | 只看該作者
地板
發(fā)表于 2025-3-22 04:38:47 | 只看該作者
5#
發(fā)表于 2025-3-22 12:00:33 | 只看該作者
6#
發(fā)表于 2025-3-22 15:52:52 | 只看該作者
7#
發(fā)表于 2025-3-22 19:28:21 | 只看該作者
http://image.papertrans.cn/d/image/264636.jpg
8#
發(fā)表于 2025-3-22 23:36:45 | 只看該作者
9#
發(fā)表于 2025-3-23 04:13:52 | 只看該作者
Overview: Background and ApplicationsIn this chapter, we will discuss the basic architecture of neural networks including activation functions, ., and .. We will also create a simple neural network model from scratch using the . activation function. In particular, this chapter will discuss:
10#
發(fā)表于 2025-3-23 07:44:17 | 只看該作者
Spezielle Zielgruppen und Lernziele,In this section we will learn the foundations of deep learning and how deep learning actually works. In particular, we will discuss.We will also construct a deep learning algorithm from scratch.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
措勤县| 怀来县| 海淀区| 红原县| 晋城| 乾安县| 铜陵市| 个旧市| 廉江市| 西昌市| 龙井市| 蒲城县| 新宁县| 琼结县| 浦城县| 桐乡市| 东乌珠穆沁旗| 科技| 新密市| 庆安县| 达拉特旗| 定安县| 比如县| 永丰县| 嘉义市| 内黄县| 宝应县| 万安县| 塔河县| 凌云县| 伽师县| 泉州市| 固始县| 嘉善县| 开原市| 同心县| 朝阳县| 安义县| 常宁市| 石柱| 江川县|