找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning with Python; A Hands-on Introduct Nikhil Ketkar Book 2017 Nikhil Ketkar 2017 Deep Learning.Python.Keras.Theano.Caffe.Deep Lea

[復制鏈接]
查看: 36903|回復: 56
樓主
發(fā)表于 2025-3-21 19:45:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning with Python
副標題A Hands-on Introduct
編輯Nikhil Ketkar
視頻videohttp://file.papertrans.cn/265/264635/264635.mp4
概述Focus on taking deep learning models to production.Practical and hands-on approach.Covers popular Python frameworks
圖書封面Titlebook: Deep Learning with Python; A Hands-on Introduct Nikhil Ketkar Book 2017 Nikhil Ketkar 2017 Deep Learning.Python.Keras.Theano.Caffe.Deep Lea
描述Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these frameworks is often acquired by practitioners by reading source code, manuals, and posting questions on community forums, which tends to be a slow and a painful process. .Deep Learning with Python .allows you to ramp up to such practical know-how in a short period of time and focus more on the domain, models, and algorithms..This book briefly covers the mathematical prerequisites and fundamentals of deep learning, making this book a good starting point for software developers who want to get started in deep learning. A brief survey of deep learning architectures is also included..Deep Learning with Python. alsointroduces you to key concepts of automatic differentiation and GPU computation which, while not central to deep learning, are critical when it comes to conducting large scale experiments.?.What You Will Learn?.Leverage deep learning frameworks in Python namely, Ker
出版日期Book 2017
關(guān)鍵詞Deep Learning; Python; Keras; Theano; Caffe; Deep Learning Architecture; GPU
版次1
doihttps://doi.org/10.1007/978-1-4842-2766-4
isbn_softcover978-1-4842-2765-7
isbn_ebook978-1-4842-2766-4
copyrightNikhil Ketkar 2017
The information of publication is updating

書目名稱Deep Learning with Python影響因子(影響力)




書目名稱Deep Learning with Python影響因子(影響力)學科排名




書目名稱Deep Learning with Python網(wǎng)絡公開度




書目名稱Deep Learning with Python網(wǎng)絡公開度學科排名




書目名稱Deep Learning with Python被引頻次




書目名稱Deep Learning with Python被引頻次學科排名




書目名稱Deep Learning with Python年度引用




書目名稱Deep Learning with Python年度引用學科排名




書目名稱Deep Learning with Python讀者反饋




書目名稱Deep Learning with Python讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:27:29 | 只看該作者
pects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these framework
板凳
發(fā)表于 2025-3-22 02:01:13 | 只看該作者
地板
發(fā)表于 2025-3-22 06:20:14 | 只看該作者
hon. alsointroduces you to key concepts of automatic differentiation and GPU computation which, while not central to deep learning, are critical when it comes to conducting large scale experiments.?.What You Will Learn?.Leverage deep learning frameworks in Python namely, Ker978-1-4842-2765-7978-1-4842-2766-4
5#
發(fā)表于 2025-3-22 11:48:37 | 只看該作者
Book 2017d..Deep Learning with Python. alsointroduces you to key concepts of automatic differentiation and GPU computation which, while not central to deep learning, are critical when it comes to conducting large scale experiments.?.What You Will Learn?.Leverage deep learning frameworks in Python namely, Ker
6#
發(fā)表于 2025-3-22 15:58:56 | 只看該作者
7#
發(fā)表于 2025-3-22 18:39:23 | 只看該作者
Edward P. St. John,Feven Girmayn front end to the Torch engine (which initially only had Lua bindings) which at its heart provides the ability to define mathematical functions and compute their gradients. PyTorch has fairly good Graphical Processing Unit (GPU) support and is a fast-maturing framework.
8#
發(fā)表于 2025-3-22 23:51:20 | 只看該作者
Edward P. St. John,Feven Girmayn front end to the Torch engine (which initially only had Lua bindings) which at its heart provides the ability to define mathematical functions and compute their gradients. PyTorch has fairly good Graphical Processing Unit (GPU) support and is a fast-maturing framework.
9#
發(fā)表于 2025-3-23 05:04:00 | 只看該作者
10#
發(fā)表于 2025-3-23 05:57:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
民县| 高台县| 斗六市| 岢岚县| 盘山县| 呼伦贝尔市| 阜康市| 贵州省| 灵丘县| 洛隆县| 佛山市| 海门市| 湘潭市| 象山县| 定结县| 溆浦县| 安溪县| 遵义市| 东城区| 淅川县| 怀仁县| 安义县| 镇康县| 四会市| 德惠市| 莒南县| 昌江| 中阳县| 孟津县| 鄂尔多斯市| 东乡县| 贺兰县| 五河县| 浪卡子县| 塔河县| 修武县| 祁连县| 黄大仙区| 祁东县| 鄂托克旗| 余江县|