找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning with Azure; Building and Deployi Mathew Salvaris,Danielle Dean,Wee Hyong Tok Book 2018 Mathew Salvaris, Danielle Dean, Wee Hy

[復(fù)制鏈接]
查看: 20838|回復(fù): 46
樓主
發(fā)表于 2025-3-21 16:26:58 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning with Azure
副標(biāo)題Building and Deployi
編輯Mathew Salvaris,Danielle Dean,Wee Hyong Tok
視頻videohttp://file.papertrans.cn/265/264633/264633.mp4
概述Provides a solid introduction to deep learning concepts, trends, and opportunities.Shows how to perform machine learning and deep learning using the latest tools and technologies on Microsoft AI.Teach
圖書封面Titlebook: Deep Learning with Azure; Building and Deployi Mathew Salvaris,Danielle Dean,Wee Hyong Tok Book 2018 Mathew Salvaris, Danielle Dean, Wee Hy
描述Get up-to-speed with Microsoft‘s AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer..Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of .should. I build AI into my business, but more about .where. do I begin and how do I get started with AI?.Written by expert data scientists at Microsoft,?.Deep Learning with the Microsoft AI Platform.?helps you with the how-to of doing deep learning on Azure and leveraging deep learning to create innovative and intelligent solutions. Benefit from guidance on where to begin your AI adventure, and learn how the cloud provides you with all the tools, infrastructure, and services you need to do AI..What You‘llLearn.Become familiar with the tools, infrastructure, and services available for deep learning on Microsoft Azure such as Azure Machine Learning services and Batch AI.Use pre-built AI capabilities (Computer Vision, OCR, gender, emotion, landmark detection, and more).Understand the common deep learning models, including convolution
出版日期Book 2018
關(guān)鍵詞Azure AI Platform; Microsoft Azure; Data Science; Deep Learning; Machine Learning; Wee Hyong Tok; Danielle
版次1
doihttps://doi.org/10.1007/978-1-4842-3679-6
isbn_softcover978-1-4842-3678-9
isbn_ebook978-1-4842-3679-6
copyrightMathew Salvaris, Danielle Dean, Wee Hyong Tok 2018
The information of publication is updating

書目名稱Deep Learning with Azure影響因子(影響力)




書目名稱Deep Learning with Azure影響因子(影響力)學(xué)科排名




書目名稱Deep Learning with Azure網(wǎng)絡(luò)公開度




書目名稱Deep Learning with Azure網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning with Azure被引頻次




書目名稱Deep Learning with Azure被引頻次學(xué)科排名




書目名稱Deep Learning with Azure年度引用




書目名稱Deep Learning with Azure年度引用學(xué)科排名




書目名稱Deep Learning with Azure讀者反饋




書目名稱Deep Learning with Azure讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:47:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:14:06 | 只看該作者
https://doi.org/10.1007/978-1-4757-4949-6In Chapter 1, we gave an overview of AI and the basic idea behind deep learning. We discussed how deep learning—applying artificial neural network models with a large number of layers—has yielded state-of-the art results for several research areas, such as image classification, object detection, speech recognition, and natural language processing.
地板
發(fā)表于 2025-3-22 07:29:56 | 只看該作者
5#
發(fā)表于 2025-3-22 09:53:21 | 只看該作者
6#
發(fā)表于 2025-3-22 16:31:13 | 只看該作者
7#
發(fā)表于 2025-3-22 17:49:06 | 只看該作者
Mathew Salvaris,Danielle Dean,Wee Hyong TokProvides a solid introduction to deep learning concepts, trends, and opportunities.Shows how to perform machine learning and deep learning using the latest tools and technologies on Microsoft AI.Teach
8#
發(fā)表于 2025-3-22 22:14:36 | 只看該作者
9#
發(fā)表于 2025-3-23 04:15:31 | 只看該作者
10#
發(fā)表于 2025-3-23 07:11:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 23:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武乡县| 景泰县| 海门市| 南平市| 施甸县| 吉林省| 稻城县| 桂林市| 油尖旺区| 盘山县| 喀喇沁旗| 寻甸| 巩留县| 凤阳县| 黔西| 哈尔滨市| 调兵山市| 油尖旺区| 永顺县| 龙南县| 威远县| 南京市| 弥勒县| 鄂托克旗| 华安县| 开平市| 波密县| 天长市| 闽清县| 凭祥市| 玛沁县| 安达市| 三河市| 长岭县| 扬中市| 即墨市| 宝应县| 隆尧县| 澄城县| 百色市| 泸溪县|