找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Solar Astronomy; Long Xu,Yihua Yan,Xin Huang Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復(fù)制鏈接]
查看: 43330|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:53:21 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning in Solar Astronomy
編輯Long Xu,Yihua Yan,Xin Huang
視頻videohttp://file.papertrans.cn/265/264629/264629.mp4
概述Explore techniques of deep learning to scientific research of solar astronomy, including applications of deep learning..Present datasets of solar activity events and training samples for training deep
叢書名稱SpringerBriefs in Computer Science
圖書封面Titlebook: Deep Learning in Solar Astronomy;  Long Xu,Yihua Yan,Xin Huang Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive l
描述.The volume of data being collected in solar astronomy has exponentially increased over the past decade and we will be entering the age of petabyte solar data. Deep learning has been an invaluable tool exploited to efficiently extract key information from the massive solar observation data, to solve the tasks of data archiving/classification, object detection and recognition...Astronomical study starts with imaging from recorded raw data, followed by image processing, such as image reconstruction, inpainting and generation, to enhance imaging quality. We study deep learning for solar image processing. First, image deconvolution is investigated for synthesis aperture imaging. Second, image inpainting is explored to repair over-saturated solar image due to light intensity beyond threshold of optical lens. Third, image translation among UV/EUV observation of the chromosphere/corona, Ha observation of the chromosphere and magnetogram of the photosphere is realized by using GAN, exhibiting powerful image domain transfer ability among multiple wavebands and different observation devices. It can compensate the lack of observation time or waveband. In addition, time series model, e.g., LST
出版日期Book 2022
關(guān)鍵詞solar astronomy; solar radio spectrum; solar image classification; solar image generation; deep Learning
版次1
doihttps://doi.org/10.1007/978-981-19-2746-1
isbn_softcover978-981-19-2745-4
isbn_ebook978-981-19-2746-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Deep Learning in Solar Astronomy影響因子(影響力)




書目名稱Deep Learning in Solar Astronomy影響因子(影響力)學(xué)科排名




書目名稱Deep Learning in Solar Astronomy網(wǎng)絡(luò)公開度




書目名稱Deep Learning in Solar Astronomy網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning in Solar Astronomy被引頻次




書目名稱Deep Learning in Solar Astronomy被引頻次學(xué)科排名




書目名稱Deep Learning in Solar Astronomy年度引用




書目名稱Deep Learning in Solar Astronomy年度引用學(xué)科排名




書目名稱Deep Learning in Solar Astronomy讀者反饋




書目名稱Deep Learning in Solar Astronomy讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:44:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:25:53 | 只看該作者
地板
發(fā)表于 2025-3-22 05:41:35 | 只看該作者
Deep Learning in Solar Object Detection Tasks,ellite continuously record high-resolution and high-cadence full-disk solar images. These images are used for solar activity forecasting and statistical analysis. Usually, it is required to mine key information from full-disk images firstly. Then, over extracted information, one can establish classi
5#
發(fā)表于 2025-3-22 08:54:00 | 只看該作者
Deep Learning in Solar Image Generation Tasks,ty of image generation which is more challenging than classification. In this chapter, several applications of deep learning in solar image enhancement, reconstruction and processing are presented, including image deconvolution of solar radioheliograph, desaturation of solar imaging, generating magn
6#
發(fā)表于 2025-3-22 15:12:36 | 只看該作者
Deep Learning in Solar Forecasting Tasks,ecifically designed for handling time series input, e.g., video sequence, natural language processing. As the best representative of RNN, LSTM has been widely exploited in various of time series analysis, achieving big success. In this chapter, it is applied to solar activity/event forecasting and s
7#
發(fā)表于 2025-3-22 21:07:45 | 只看該作者
8#
發(fā)表于 2025-3-22 23:54:14 | 只看該作者
9#
發(fā)表于 2025-3-23 01:28:00 | 只看該作者
Classical Deep Learning Models, and excitation (SE), global context (GC), and most popular transformer), graph convolution network (GCN), self-supervised learning and contrastive learning. They can further boost model performance, extend application filed and break the limits of lack of labelled data, noise data and etc.
10#
發(fā)表于 2025-3-23 06:55:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 17:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
道真| 石台县| 大安市| 萨嘎县| 裕民县| 保山市| 海城市| 齐齐哈尔市| 奇台县| 竹山县| 抚顺县| 兴隆县| 扬中市| 西昌市| 望谟县| 萨迦县| 望城县| 乐陵市| 洪湖市| 休宁县| 庐江县| 黑龙江省| 长宁区| 丰镇市| 丽江市| 永德县| 密山市| 桓台县| 河西区| 衡南县| 宁波市| 扶风县| 安远县| 抚宁县| 双牌县| 蓝山县| 秭归县| 华容县| 临沂市| 卓尼县| 柳林县|