找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; 4th International Wo Danail Stoyanov,Zeike T

[復(fù)制鏈接]
樓主: antithetic
21#
發(fā)表于 2025-3-25 05:13:50 | 只看該作者
22#
發(fā)表于 2025-3-25 09:14:53 | 只看該作者
23#
發(fā)表于 2025-3-25 11:49:02 | 只看該作者
0302-9743 L-CDS. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support..978-3-030-00888-8978-3-030-00889-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
24#
發(fā)表于 2025-3-25 16:28:13 | 只看該作者
Some Nitrogen-Containing Compoundsuclei segmentation in the microscopy images, liver segmentation in abdominal CT scans, and polyp segmentation in colonoscopy videos. Our experiments demonstrate that UNet++ with deep supervision achieves an average IoU gain of 3.9 and 3.4 points over U-Net and wide U-Net, respectively.
25#
發(fā)表于 2025-3-25 22:44:51 | 只看該作者
A Review of Analytical Literature image, we use its differential excitation component as a pair of inputs to handle intra-class variations. Experimental results show that our approach has superior performance over the state-of-the-art methods, achieving a classification accuracy of 93.74% on our original emphysema database.
26#
發(fā)表于 2025-3-26 03:36:23 | 只看該作者
27#
發(fā)表于 2025-3-26 07:44:24 | 只看該作者
UNet++: A Nested U-Net Architecture for Medical Image Segmentationuclei segmentation in the microscopy images, liver segmentation in abdominal CT scans, and polyp segmentation in colonoscopy videos. Our experiments demonstrate that UNet++ with deep supervision achieves an average IoU gain of 3.9 and 3.4 points over U-Net and wide U-Net, respectively.
28#
發(fā)表于 2025-3-26 08:53:22 | 只看該作者
29#
發(fā)表于 2025-3-26 13:07:29 | 只看該作者
3D Convolutional Neural Networks for Classification of Functional Connectomesictive models. We showcase our approach on a challenging large-scale dataset (ABIDE, with .) and report state-of-the-art accuracy results on rs-fMRI-based discrimination of autism patients and healthy controls.
30#
發(fā)表于 2025-3-26 18:25:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汪清县| 金湖县| 莱西市| 兰西县| 西盟| 漳浦县| 唐河县| 阿坝县| 甘肃省| 富平县| 威远县| 舟曲县| 册亨县| 麻栗坡县| 陆良县| 闽侯县| 金昌市| 驻马店市| 凤城市| 商水县| 灵石县| 天津市| 赤水市| 巴林右旗| 台东县| 夏津县| 台北市| 万安县| 攀枝花市| 隆德县| 固阳县| 沐川县| 大同市| 浮梁县| 祁阳县| 罗江县| 左贡县| 沙田区| 平泉县| 永定县| 新宁县|