找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Computational Mechanics; An Introductory Cour Stefan Kollmannsberger,Davide D‘Angella,Leon Herrm Textbook 2021 The Editor(

[復(fù)制鏈接]
樓主: 回憶錄
21#
發(fā)表于 2025-3-25 03:23:08 | 只看該作者
Physics-Informed Neural Networks,e evolution in a one-dimensional spatial domain is determined using the non-linear heat equation, using both a continuous and a discrete approach. Finally, the data-driven identification is illustrated with the static bar, where the cross-sectional stiffness is estimated from the displacement.
22#
發(fā)表于 2025-3-25 07:44:28 | 只看該作者
Deep Energy Method,r to handle singularities than with the PINNs. However, this approach cannot be used for the identification of differential equations. The method is illustrated with the same static bar example from Chap.?2, where the displacement is estimated.
23#
發(fā)表于 2025-3-25 13:50:49 | 只看該作者
24#
發(fā)表于 2025-3-25 16:05:48 | 只看該作者
25#
發(fā)表于 2025-3-25 23:39:57 | 只看該作者
26#
發(fā)表于 2025-3-26 01:34:30 | 只看該作者
27#
發(fā)表于 2025-3-26 07:29:07 | 只看該作者
Introduction,ter interest in areas other than computer science, such as physics and engineering. This chapter provides a brief overview of the recent developments in artificial intelligence. Furthermore, several ideas of different approaches using deep learning in computational mechanics are introduced. When tra
28#
發(fā)表于 2025-3-26 09:20:14 | 只看該作者
Fundamental Concepts of Machine Learning, this using data. This chapter gives an overview of the fundamental concepts, including the data structures, learning types, and the different machine learning tasks. Additionally, the gradient descent method is introduced to illustrate how many machine learning algorithms learn through experience.
29#
發(fā)表于 2025-3-26 15:29:38 | 只看該作者
Neural Networks,s. ANNs serve as universal function approximators, meaning that a sufficiently complex neural network can learn almost any function in any dimension. This flexibility, combined with backpropagation and a learning algorithm, enables to learn unknown functions with an astonishing accuracy. This chapte
30#
發(fā)表于 2025-3-26 20:25:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 11:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芦山县| 五指山市| 隆尧县| 左云县| 泰顺县| 万载县| 麻阳| 林周县| 吉林省| 乌兰察布市| 衡阳县| 呼伦贝尔市| 礼泉县| 汤阴县| 博乐市| 恩施市| 北辰区| 枝江市| 白沙| 德清县| 邓州市| 丽江市| 托克托县| 团风县| 南溪县| 科技| 辽阳县| 红安县| 新兴县| 措勤县| 龙胜| 法库县| 全椒县| 舞钢市| 盐亭县| 石屏县| 越西县| 武清区| 开江县| 巴彦县| 南和县|