找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Power System Applications; Case Studies Linking Fangxing Li,Yan Du Book 2024 The Editor(s) (if applicable) and The Author

[復制鏈接]
樓主: cerebellum
11#
發(fā)表于 2025-3-23 09:47:12 | 只看該作者
Desistance from Sexual Offendingons in the area of power systems are also discussed to provide the readers with a general perception of the potential of deep learning in solving complicated real-world problems, both theoretically and practically.
12#
發(fā)表于 2025-3-23 17:45:47 | 只看該作者
Palgrave Studies in Risk, Crime and Societyforcement learning (RL) techniques. In the studied problem, multiple microgrids are connected to a main distribution system, and they purchase power from the distribution system to maintain local consumption. From the perspective of the distribution system operator (DSO), the target is to decrease t
13#
發(fā)表于 2025-3-23 21:26:39 | 只看該作者
Desistance from Sexual Offendingosed method is a combination of a deep convolutional neural network (CNN) and a depth-first search (DFS) algorithm. First, deep CNN is constructed as a security assessment tool to evaluate the system security status based on observable information. Second, a scenario tree is built to represent the p
14#
發(fā)表于 2025-3-24 00:18:46 | 只看該作者
15#
發(fā)表于 2025-3-24 06:11:34 | 只看該作者
16#
發(fā)表于 2025-3-24 06:35:21 | 只看該作者
17#
發(fā)表于 2025-3-24 14:06:36 | 只看該作者
18#
發(fā)表于 2025-3-24 18:32:55 | 只看該作者
Summary and Future Works,This chapter gives a brief summary of the research works from Chaps. ., ., . and also discusses the potential future directions for applying deep learning in the field of power systems, including the most up-to-date deep learning techniques such as physics-informed deep learning, transfer learning, and meta-learning.
19#
發(fā)表于 2025-3-24 21:11:07 | 只看該作者
20#
發(fā)表于 2025-3-25 01:45:23 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 22:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
梁平县| 永靖县| 绿春县| 铜川市| 乐清市| 柳河县| 科尔| 绍兴市| 江山市| 塔河县| 房山区| 徐州市| 方山县| 南郑县| 永昌县| 富民县| 思南县| 罗田县| 九江县| 唐山市| 涪陵区| 河西区| 谢通门县| 浦县| 凌源市| 资中县| 永昌县| 博湖县| 库尔勒市| 临泉县| 酒泉市| 措美县| 泽州县| 临武县| 安塞县| 马公市| 博兴县| 凌云县| 资中县| 太和县| 北辰区|