找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Power System Applications; Case Studies Linking Fangxing Li,Yan Du Book 2024 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
樓主: cerebellum
11#
發(fā)表于 2025-3-23 09:47:12 | 只看該作者
Desistance from Sexual Offendingons in the area of power systems are also discussed to provide the readers with a general perception of the potential of deep learning in solving complicated real-world problems, both theoretically and practically.
12#
發(fā)表于 2025-3-23 17:45:47 | 只看該作者
Palgrave Studies in Risk, Crime and Societyforcement learning (RL) techniques. In the studied problem, multiple microgrids are connected to a main distribution system, and they purchase power from the distribution system to maintain local consumption. From the perspective of the distribution system operator (DSO), the target is to decrease t
13#
發(fā)表于 2025-3-23 21:26:39 | 只看該作者
Desistance from Sexual Offendingosed method is a combination of a deep convolutional neural network (CNN) and a depth-first search (DFS) algorithm. First, deep CNN is constructed as a security assessment tool to evaluate the system security status based on observable information. Second, a scenario tree is built to represent the p
14#
發(fā)表于 2025-3-24 00:18:46 | 只看該作者
15#
發(fā)表于 2025-3-24 06:11:34 | 只看該作者
16#
發(fā)表于 2025-3-24 06:35:21 | 只看該作者
17#
發(fā)表于 2025-3-24 14:06:36 | 只看該作者
18#
發(fā)表于 2025-3-24 18:32:55 | 只看該作者
Summary and Future Works,This chapter gives a brief summary of the research works from Chaps. ., ., . and also discusses the potential future directions for applying deep learning in the field of power systems, including the most up-to-date deep learning techniques such as physics-informed deep learning, transfer learning, and meta-learning.
19#
發(fā)表于 2025-3-24 21:11:07 | 只看該作者
20#
發(fā)表于 2025-3-25 01:45:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 09:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌兰县| 淅川县| 新余市| 灌阳县| 永寿县| 农安县| 宿迁市| 韩城市| 武川县| 蓬溪县| 长乐市| 三穗县| 邹城市| 宣化县| 监利县| 个旧市| 潍坊市| 娄底市| 开鲁县| 龙井市| 泸州市| 克东县| 沾化县| 祥云县| 闵行区| 星子县| 内黄县| 龙川县| 花莲县| 景德镇市| 勐海县| 白城市| 中方县| 柳江县| 津南区| 丰城市| 五华县| 蓬莱市| 宁国市| 鲁山县| 永清县|