找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for NLP and Speech Recognition; Uday Kamath,John Liu,James Whitaker Textbook 2019 Springer Nature Switzerland AG 2019 Deep L

[復(fù)制鏈接]
查看: 15799|回復(fù): 52
樓主
發(fā)表于 2025-3-21 18:46:21 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning for NLP and Speech Recognition
編輯Uday Kamath,John Liu,James Whitaker
視頻videohttp://file.papertrans.cn/265/264611/264611.mp4
概述A comprehensive resource that builds up from elementary deep learning, text, and speech principles to advanced state-of-the-art neural architectures.A ready reference for deep learning techniques appl
圖書封面Titlebook: Deep Learning for NLP and Speech Recognition;  Uday Kamath,John Liu,James Whitaker Textbook 2019 Springer Nature Switzerland AG 2019 Deep L
描述This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition.?With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights? into? using? the? tools? and? libraries? for? real-world? applications.?.Deep Learning for NLP and Speech Recognition.?explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience.??.Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book.?.The book is organized into three parts, aligning to different groups of readers and their
出版日期Textbook 2019
關(guān)鍵詞Deep Learning Architecture; Document Classification; Machine Translation; Language Modeling; Speech Reco
版次1
doihttps://doi.org/10.1007/978-3-030-14596-5
isbn_softcover978-3-030-14598-9
isbn_ebook978-3-030-14596-5
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Deep Learning for NLP and Speech Recognition影響因子(影響力)




書目名稱Deep Learning for NLP and Speech Recognition影響因子(影響力)學(xué)科排名




書目名稱Deep Learning for NLP and Speech Recognition網(wǎng)絡(luò)公開度




書目名稱Deep Learning for NLP and Speech Recognition網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning for NLP and Speech Recognition被引頻次




書目名稱Deep Learning for NLP and Speech Recognition被引頻次學(xué)科排名




書目名稱Deep Learning for NLP and Speech Recognition年度引用




書目名稱Deep Learning for NLP and Speech Recognition年度引用學(xué)科排名




書目名稱Deep Learning for NLP and Speech Recognition讀者反饋




書目名稱Deep Learning for NLP and Speech Recognition讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:43:19 | 只看該作者
Distributed Representationshow it can be leveraged to form semantic representations of words. We discuss the common distributional semantic models including . and . and their variants. We address the shortcomings of embedding models and their extension to document and concept representation. Finally, we discuss several applic
板凳
發(fā)表于 2025-3-22 02:59:49 | 只看該作者
Convolutional Neural Networksucting complex deep learning solutions for various NLP, speech, and time series tasks. LeCun first introduced certain basic parts of the CNN frameworks as a general NN framework to solve various high-dimensional data problems in computer vision, speech, and time series. ImageNet applied convolutions
地板
發(fā)表于 2025-3-22 06:16:35 | 只看該作者
5#
發(fā)表于 2025-3-22 11:59:21 | 只看該作者
6#
發(fā)表于 2025-3-22 16:28:15 | 只看該作者
Attention and Memory Augmented Networks forms of convolutional and recurrent networks, respectively. When the data has certain dependencies such as out-of-order access, long-term dependencies, unordered access, most standard architectures discussed are not suitable. Let us consider a specific example from the bAbI dataset where there are
7#
發(fā)表于 2025-3-22 17:33:19 | 只看該作者
8#
發(fā)表于 2025-3-23 01:06:32 | 只看該作者
9#
發(fā)表于 2025-3-23 04:34:48 | 只看該作者
10#
發(fā)表于 2025-3-23 06:38:19 | 只看該作者
tectures.A ready reference for deep learning techniques applThis textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition.?With the widespread adoption of deep learning, nat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 03:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹰潭市| 盐池县| 道真| 宁晋县| 浏阳市| 依安县| 綦江县| 雷山县| 海南省| 右玉县| 镇雄县| 巴楚县| 彰化县| 金坛市| 葵青区| 常宁市| 虞城县| 高清| 恭城| 土默特左旗| 淄博市| 铅山县| 二连浩特市| 万年县| 河东区| 荥经县| 阳朔县| 红原县| 阿鲁科尔沁旗| 贵溪市| 孟州市| 玛纳斯县| 昆山市| 梓潼县| 松潘县| 绥江县| 朔州市| 邢台市| 七台河市| 杭锦旗| 屏南县|