找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Practice with MindSpore; Lei Chen Book 2021 Tsinghua University Press 2021 Deep Learning.MindSpore.Deep Neural Networks

[復制鏈接]
查看: 54151|回復: 50
樓主
發(fā)表于 2025-3-21 17:17:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning and Practice with MindSpore
編輯Lei Chen
視頻videohttp://file.papertrans.cn/265/264598/264598.mp4
概述Introduces readers to deep learning models and algorithms in both theory and practice.Explores how deep learning methods can be used in various applications and their performance in this regard.Combin
叢書名稱Cognitive Intelligence and Robotics
圖書封面Titlebook: Deep Learning and Practice with MindSpore;  Lei Chen Book 2021 Tsinghua University Press 2021 Deep Learning.MindSpore.Deep Neural Networks
描述.This book systematically introduces readers to the theory of deep learning and explores its practical applications based on the MindSpore AI computing framework. Divided into 14 chapters, the book covers deep learning, deep neural networks (DNNs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), unsupervised learning, deep reinforcement learning, automated machine learning, device-cloud collaboration, deep learning visualization, and data preparation for deep learning. To help clarify the complex topics discussed, this book includes numerous examples and links to online resources..
出版日期Book 2021
關(guān)鍵詞Deep Learning; MindSpore; Deep Neural Networks (DNNs); Convolutional Neural Networks (CNNs); Recurrent N
版次1
doihttps://doi.org/10.1007/978-981-16-2233-5
isbn_softcover978-981-16-2235-9
isbn_ebook978-981-16-2233-5Series ISSN 2520-1956 Series E-ISSN 2520-1964
issn_series 2520-1956
copyrightTsinghua University Press 2021
The information of publication is updating

書目名稱Deep Learning and Practice with MindSpore影響因子(影響力)




書目名稱Deep Learning and Practice with MindSpore影響因子(影響力)學科排名




書目名稱Deep Learning and Practice with MindSpore網(wǎng)絡(luò)公開度




書目名稱Deep Learning and Practice with MindSpore網(wǎng)絡(luò)公開度學科排名




書目名稱Deep Learning and Practice with MindSpore被引頻次




書目名稱Deep Learning and Practice with MindSpore被引頻次學科排名




書目名稱Deep Learning and Practice with MindSpore年度引用




書目名稱Deep Learning and Practice with MindSpore年度引用學科排名




書目名稱Deep Learning and Practice with MindSpore讀者反饋




書目名稱Deep Learning and Practice with MindSpore讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:12:45 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:28:25 | 只看該作者
Deep Learning Visualization,explain why certain models excel on specific problems. Consequently, locating errors that occur in the models, and performing the subsequent code debugging, is a difficult process. Developers and model users alike therefore urgently need a method to help them explain, debug, and optimize deep learning models.
地板
發(fā)表于 2025-3-22 05:10:54 | 只看該作者
Book 2021ral networks (RNNs), unsupervised learning, deep reinforcement learning, automated machine learning, device-cloud collaboration, deep learning visualization, and data preparation for deep learning. To help clarify the complex topics discussed, this book includes numerous examples and links to online resources..
5#
發(fā)表于 2025-3-22 09:49:04 | 只看該作者
2520-1956 learning, device-cloud collaboration, deep learning visualization, and data preparation for deep learning. To help clarify the complex topics discussed, this book includes numerous examples and links to online resources..978-981-16-2235-9978-981-16-2233-5Series ISSN 2520-1956 Series E-ISSN 2520-1964
6#
發(fā)表于 2025-3-22 14:24:31 | 只看該作者
2520-1956 ous applications and their performance in this regard.Combin.This book systematically introduces readers to the theory of deep learning and explores its practical applications based on the MindSpore AI computing framework. Divided into 14 chapters, the book covers deep learning, deep neural networks
7#
發(fā)表于 2025-3-22 18:15:41 | 只看該作者
Models of Hypertext Structure and Learningmaximally retaining the original semantics of the word. In this important tool for understanding natural language, we can use a word vector as the smallest unit for mining corpus data or as an input to complex models.
8#
發(fā)表于 2025-3-22 22:27:53 | 只看該作者
Designing Impedance Networks Convertersneed to analyze and process graph data. One effective method for graph analysis is to map a graph’s elements to a low-dimensional vector space while retaining the graph’s structure and property information. This low-dimensional vector is called a graph vector (or “graph embedding”), which is described below.
9#
發(fā)表于 2025-3-23 02:25:21 | 只看該作者
10#
發(fā)表于 2025-3-23 06:29:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
舒城县| 普兰店市| 方城县| 炎陵县| 长治市| 琼海市| 嘉善县| 眉山市| 马鞍山市| 泸州市| 准格尔旗| 铜陵市| 泰安市| 颍上县| 平度市| 全椒县| 唐海县| 漳平市| 克东县| 正镶白旗| 九台市| 昌江| 白河县| 高陵县| 蒙山县| 桦甸市| 安龙县| 瑞金市| 高清| 锦屏县| 华安县| 融水| 永州市| 安国市| 济南市| 永福县| 洛南县| 霍林郭勒市| 阳信县| 沅陵县| 长顺县|