找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Theory and Applications; First International Ana Fred,Carlo Sansone,Kurosh Madani Conference proceedings 2023 The Editor(s)

[復(fù)制鏈接]
查看: 54775|回復(fù): 39
樓主
發(fā)表于 2025-3-21 17:00:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Deep Learning Theory and Applications
副標(biāo)題First International
編輯Ana Fred,Carlo Sansone,Kurosh Madani
視頻videohttp://file.papertrans.cn/265/264587/264587.mp4
叢書(shū)名稱(chēng)Communications in Computer and Information Science
圖書(shū)封面Titlebook: Deep Learning Theory and Applications; First International  Ana Fred,Carlo Sansone,Kurosh Madani Conference proceedings 2023 The Editor(s)
描述This book constitutes the refereed post-proceedings of the First International Conference and Second International Conference?on?Deep Learning Theory and Applications,?DeLTA 2020 and?DeLTA 2021,?was held virtually due to the COVID-19 crisis on?July 8-10, 2020 and?July 7–9, 2021..The 7 full papers included in this book were carefully reviewed and?selected from 58 submissions. They present recent research on machine learning and artificial intelligence in real-world applications such as computer vision, information retrieval and summarization from structuredand unstructured multimodal data sources, natural language understanding andtranslation, and many other application domains..
出版日期Conference proceedings 2023
關(guān)鍵詞Models and Algorithms; Machine Learning; Big Data Analytics; Computer Vision; Natural Language Understan
版次1
doihttps://doi.org/10.1007/978-3-031-37320-6
isbn_softcover978-3-031-37319-0
isbn_ebook978-3-031-37320-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Deep Learning Theory and Applications影響因子(影響力)




書(shū)目名稱(chēng)Deep Learning Theory and Applications影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Deep Learning Theory and Applications網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Deep Learning Theory and Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Deep Learning Theory and Applications被引頻次




書(shū)目名稱(chēng)Deep Learning Theory and Applications被引頻次學(xué)科排名




書(shū)目名稱(chēng)Deep Learning Theory and Applications年度引用




書(shū)目名稱(chēng)Deep Learning Theory and Applications年度引用學(xué)科排名




書(shū)目名稱(chēng)Deep Learning Theory and Applications讀者反饋




書(shū)目名稱(chēng)Deep Learning Theory and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:42:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:06:57 | 只看該作者
,Evaluating Deep Learning Models for?the?Automatic Inspection of?Collective Protective Equipment,heir performances in specific scenarios..In this paper we tackle the problem of autonomously inspecting the conditions of Collective Protection Equipment (CPE) such as fire extinguishers, warning signs, ground and wall signalization and others..Work ministry imposes that such CPE are in good conditi
地板
發(fā)表于 2025-3-22 08:07:23 | 只看該作者
5#
發(fā)表于 2025-3-22 10:37:27 | 只看該作者
,Forecasting the?UN Sustainable Development Goals,le Development Goal (SDG) attainment forecasting. Unlike earlier SDG attainment forecasting frameworks, the SDG-TTF framework considers the possibility for causal relationships between SDG indicators, both within a given geographic entity (intra-entity relationships) and between the current entity a
6#
發(fā)表于 2025-3-22 14:58:03 | 只看該作者
7#
發(fā)表于 2025-3-22 17:57:30 | 只看該作者
8#
發(fā)表于 2025-3-22 23:49:20 | 只看該作者
,Alternative Data Augmentation for?Industrial Monitoring Using Adversarial Learning, labels are translated into color images using pix2pix and used to train a U-Net. The results suggest that the trigonometric function is superior to the WGAN model. However, a precise examination of the resulting images indicate that WGAN and image-to-image translation achieve good segmentation resu
9#
發(fā)表于 2025-3-23 04:59:10 | 只看該作者
,Multi-stage Conditional GAN Architectures for?Person-Image Generation, Multi-stage Person Generation (MPG) model, in which we have modified the Generator architecture of Pose Guided Person Image Generation . resulting in two approaches. The first three-stage person generation approach has an additional generator integrated to base architecture and has trained the mode
10#
發(fā)表于 2025-3-23 07:00:07 | 只看該作者
,Evaluating Deep Learning Models for?the?Automatic Inspection of?Collective Protective Equipment,e evaluation of CPE conditions. We provide results that highlight each architecture’s advantages and drawbacks in the aforementioned scenario..Indeed, experiments have shown their potential in reducing time and costs of periodic inspections in factories.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 16:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永嘉县| 晴隆县| 应城市| 隆林| 茌平县| 石狮市| 彝良县| 萝北县| 全南县| 砀山县| 崇仁县| 平顶山市| 东光县| 昂仁县| 噶尔县| 金门县| 五台县| 大埔区| 吉首市| 定南县| 武强县| 武城县| 探索| 常宁市| 固阳县| 洞头县| 宣威市| 鹤山市| 姚安县| 崇义县| 全州县| 昌平区| 南投市| 方山县| 满城县| 博兴县| 青田县| 蒲江县| 富宁县| 隆化县| 勐海县|