找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Theory and Applications; 4th International Co Donatello Conte,Ana Fred,Carlo Sansone Conference proceedings 2023 The Editor(s

[復制鏈接]
查看: 36328|回復: 61
樓主
發(fā)表于 2025-3-21 19:27:56 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning Theory and Applications
副標題4th International Co
編輯Donatello Conte,Ana Fred,Carlo Sansone
視頻videohttp://file.papertrans.cn/265/264586/264586.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Deep Learning Theory and Applications; 4th International Co Donatello Conte,Ana Fred,Carlo Sansone Conference proceedings 2023 The Editor(s
描述This book consitiutes the refereed proceedings of the 4th International Conference on Deep Learning Theory and Applications, DeLTA 2023, held in Rome, Italy from 13 to 14 July 2023..The 9 full papers and 22 short papers presented were thoroughly reviewed and selected from the 42 qualified submissions. The scope of the conference includes such topics as models and algorithms; machine learning; big data analytics; computer vision applications; and natural language understanding..
出版日期Conference proceedings 2023
關鍵詞artificial intelligence; computer security; data security; distributed systems; parallel processing syst
版次1
doihttps://doi.org/10.1007/978-3-031-39059-3
isbn_softcover978-3-031-39058-6
isbn_ebook978-3-031-39059-3Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Deep Learning Theory and Applications影響因子(影響力)




書目名稱Deep Learning Theory and Applications影響因子(影響力)學科排名




書目名稱Deep Learning Theory and Applications網絡公開度




書目名稱Deep Learning Theory and Applications網絡公開度學科排名




書目名稱Deep Learning Theory and Applications被引頻次




書目名稱Deep Learning Theory and Applications被引頻次學科排名




書目名稱Deep Learning Theory and Applications年度引用




書目名稱Deep Learning Theory and Applications年度引用學科排名




書目名稱Deep Learning Theory and Applications讀者反饋




書目名稱Deep Learning Theory and Applications讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:18:16 | 只看該作者
,A Study of?Neural Collapse for?Text Classification,this additional cluster represents an additional topic within the dataset, challenging the initial assumption of four distinct classes in AG News. This significant discovery suggests a promising research direction, where NC can serve as a tool for cluster discovery in semi-supervised learning scenarios.
板凳
發(fā)表于 2025-3-22 03:23:26 | 只看該作者
地板
發(fā)表于 2025-3-22 08:15:05 | 只看該作者
Zhongwei Gu,Youxiang Cui,Haibo Tang,Xiao Liue make use of convolutional neural networks (CNN) and various data-augmentation techniques. We showcase the results of this approach on the challenging . dataset, with the task of classifying between different primate species sounds, and report significantly higher Accuracy and UAR scores in contrast to comparatively equipped model baselines.
5#
發(fā)表于 2025-3-22 11:26:30 | 只看該作者
6#
發(fā)表于 2025-3-22 12:59:29 | 只看該作者
Yun Liang,Junyi Mo,Yi Lu,Xing Yuan. Finally, we present an ablation study to validate our approach. We discovered that data2vec appears to be the best option if time and lightweightness are critical factors. On the other hand, wav2vec2phoneme is the most appropriate choice if overall performance is the primary criterion.
7#
發(fā)表于 2025-3-22 20:27:28 | 只看該作者
Improving Primate Sounds Classification Using Binary Presorting for Deep Learning,e make use of convolutional neural networks (CNN) and various data-augmentation techniques. We showcase the results of this approach on the challenging . dataset, with the task of classifying between different primate species sounds, and report significantly higher Accuracy and UAR scores in contrast to comparatively equipped model baselines.
8#
發(fā)表于 2025-3-23 00:59:38 | 只看該作者
An Automated Dual-Module Pipeline for Stock Prediction: Integrating N-Perception Period Power Stratlenges, we propose an automated pipeline consisting of two modules: an N-Perception period power strategy for identifying potential stocks and a sentiment analysis module using NLP techniques to capture market sentiment. By incorporating these methodologies, we aim to enhance stock prediction accuracy and provide valuable insights for investors.
9#
發(fā)表于 2025-3-23 02:40:53 | 只看該作者
,Phoneme-Based Multi-task Assessment of?Affective Vocal Bursts,. Finally, we present an ablation study to validate our approach. We discovered that data2vec appears to be the best option if time and lightweightness are critical factors. On the other hand, wav2vec2phoneme is the most appropriate choice if overall performance is the primary criterion.
10#
發(fā)表于 2025-3-23 06:23:49 | 只看該作者
1865-0929 submissions. The scope of the conference includes such topics as models and algorithms; machine learning; big data analytics; computer vision applications; and natural language understanding..978-3-031-39058-6978-3-031-39059-3Series ISSN 1865-0929 Series E-ISSN 1865-0937
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-24 07:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
衡南县| 江西省| 叶城县| 汝州市| 凤翔县| 洛扎县| 万盛区| 屯昌县| 乌鲁木齐县| 大余县| 县级市| 嘉义县| 三原县| 江孜县| 鹤庆县| 鹤山市| 福安市| 望城县| 溧水县| 苗栗市| 阳山县| 海兴县| 富裕县| 壤塘县| 信丰县| 普格县| 山东| 雅安市| 兴国县| 布尔津县| 罗定市| 基隆市| 赣州市| 柏乡县| 鄂州市| 运城市| 平江县| 库尔勒市| 防城港市| 禄劝| 榆树市|