找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Techniques for Music Generation; Jean-Pierre Briot,Ga?tan Hadjeres,Fran?ois-David P Book 2020 Springer Nature Switzerland AG

[復(fù)制鏈接]
查看: 23910|回復(fù): 41
樓主
發(fā)表于 2025-3-21 19:03:18 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Deep Learning Techniques for Music Generation
編輯Jean-Pierre Briot,Ga?tan Hadjeres,Fran?ois-David P
視頻videohttp://file.papertrans.cn/265/264583/264583.mp4
概述Authors‘ analysis based on five dimensions: objective, representation, architecture, challenge, and strategy.Important application of deep learning, for AI researchers and composers.Research was condu
叢書(shū)名稱(chēng)Computational Synthesis and Creative Systems
圖書(shū)封面Titlebook: Deep Learning Techniques for Music Generation;  Jean-Pierre Briot,Ga?tan Hadjeres,Fran?ois-David P Book 2020 Springer Nature Switzerland AG
描述.This book?is a survey and analysis of how deep learning can be used to generate musical?content. The authors offer a comprehensive presentation of the foundations of?deep learning?techniques for music generation. They also develop a conceptual?framework used to classify and analyze various types of architecture, encoding?models, generation strategies, and ways to?control the generation. The five dimensions?of this framework are: objective (the kind of musical content to be generated, e.g.,?melody, accompaniment); representation (the musical?elements to be considered and?how to encode them, e.g., chord, silence, piano roll, one-hot encoding);?architecture (the structure organizing neurons, their connexions, and the flow?of their?activations, e.g., feedforward, recurrent, variational autoencoder);?challenge (the desired properties and issues, e.g., variability,?incrementality, adaptability); and strategy (the way to model?and control the?process of generation, e.g., single-step feedforward, iterative feedforward,?decoder feedforward, sampling). To illustrate the possible design decisions and?to allow?comparison and correlation analysis they analyze and classify more?than 40 systems,
出版日期Book 2020
關(guān)鍵詞Music Generation; Machine Learning; Deep Learning; Neural Networks; Representation; Artificial Intelligen
版次1
doihttps://doi.org/10.1007/978-3-319-70163-9
isbn_ebook978-3-319-70163-9Series ISSN 2509-6575 Series E-ISSN 2509-6583
issn_series 2509-6575
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱(chēng)Deep Learning Techniques for Music Generation影響因子(影響力)




書(shū)目名稱(chēng)Deep Learning Techniques for Music Generation影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Deep Learning Techniques for Music Generation網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Deep Learning Techniques for Music Generation網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Deep Learning Techniques for Music Generation被引頻次




書(shū)目名稱(chēng)Deep Learning Techniques for Music Generation被引頻次學(xué)科排名




書(shū)目名稱(chēng)Deep Learning Techniques for Music Generation年度引用




書(shū)目名稱(chēng)Deep Learning Techniques for Music Generation年度引用學(xué)科排名




書(shū)目名稱(chēng)Deep Learning Techniques for Music Generation讀者反饋




書(shū)目名稱(chēng)Deep Learning Techniques for Music Generation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:14:49 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:31:46 | 只看該作者
Book 2020y); and strategy (the way to model?and control the?process of generation, e.g., single-step feedforward, iterative feedforward,?decoder feedforward, sampling). To illustrate the possible design decisions and?to allow?comparison and correlation analysis they analyze and classify more?than 40 systems,
地板
發(fā)表于 2025-3-22 06:54:17 | 只看該作者
5#
發(fā)表于 2025-3-22 09:45:39 | 只看該作者
Manifesto of Design of UnfinishedIn our analysis, we consider five main . to characterize different ways of applying deep learning techniques to generate musical content. This typology is aimed at helping the analysis of the various perspectives (and elements) leading to the design of different deep learning-based music generation systems.
6#
發(fā)表于 2025-3-22 15:14:28 | 只看該作者
7#
發(fā)表于 2025-3-22 18:07:36 | 只看該作者
Urban Remnants Become Setting for EventsThe second dimension of our analysis, the ., is about the way the musical content is represented. The choice of representation and its encoding is tightly connected to the configuration of the input and the output of the architecture, i.e. the number of input and output variables as well as their corresponding types.
8#
發(fā)表于 2025-3-22 22:58:43 | 只看該作者
9#
發(fā)表于 2025-3-23 01:41:10 | 只看該作者
Rationale und differenzierte DesignbewertungWe are now reaching the core of this book. This chapter will analyze in depth how to apply the architectures presented in Chapter 5 to learn and generate music. We will first start with a naive, straightforward strategy, using the basic prediction task of a neural network to generate an accompaniment for a melody.
10#
發(fā)表于 2025-3-23 08:00:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 10:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南部县| 开鲁县| 鹰潭市| 花莲市| 太和县| 兴隆县| 莱州市| 循化| 山西省| 德惠市| 余干县| 郎溪县| 长岭县| 安国市| 盘锦市| 延边| 仁怀市| 湖口县| 肇源县| 甘德县| 太康县| 绥芬河市| 方山县| 渝中区| 高台县| 湖口县| 资溪县| 麟游县| 葫芦岛市| 宁远县| 平凉市| 尼木县| 梨树县| 涿州市| 黎城县| 闽侯县| 兴和县| 泸定县| 晋宁县| 兴安县| 万安县|