找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Techniques for IoT Security and Privacy; Mohamed Abdel-Basset,Nour Moustafa,Weiping Ding Book 2022 The Editor(s) (if applica

[復制鏈接]
查看: 40733|回復: 42
樓主
發(fā)表于 2025-3-21 17:04:54 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning Techniques for IoT Security and Privacy
編輯Mohamed Abdel-Basset,Nour Moustafa,Weiping Ding
視頻videohttp://file.papertrans.cn/265/264582/264582.mp4
概述Presents a Machine Learning Approach to Conducting Digital Forensics.Contains state-of-the-art research and shows how to teach hands-on incident response and digital forensic courses.Covers the applic
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Deep Learning Techniques for IoT Security and Privacy;  Mohamed Abdel-Basset,Nour Moustafa,Weiping Ding Book 2022 The Editor(s) (if applica
描述.This book states that the major aim audience are people who have some familiarity with Internet of things (IoT) but interested to get a comprehensive interpretation of the role of deep Learning in maintaining the security and privacy of IoT. A reader should be friendly with Python and the basics of machine learning and deep learning. Interpretation of statistics and probability theory will be a plus but is not certainly vital for identifying most of the book‘s material..
出版日期Book 2022
關鍵詞Cyber Forensics; Digital Forensic Education; Digital Forensics; Virtual Machines Forensics; Social Media
版次1
doihttps://doi.org/10.1007/978-3-030-89025-4
isbn_softcover978-3-030-89027-8
isbn_ebook978-3-030-89025-4Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Deep Learning Techniques for IoT Security and Privacy影響因子(影響力)




書目名稱Deep Learning Techniques for IoT Security and Privacy影響因子(影響力)學科排名




書目名稱Deep Learning Techniques for IoT Security and Privacy網(wǎng)絡公開度




書目名稱Deep Learning Techniques for IoT Security and Privacy網(wǎng)絡公開度學科排名




書目名稱Deep Learning Techniques for IoT Security and Privacy被引頻次




書目名稱Deep Learning Techniques for IoT Security and Privacy被引頻次學科排名




書目名稱Deep Learning Techniques for IoT Security and Privacy年度引用




書目名稱Deep Learning Techniques for IoT Security and Privacy年度引用學科排名




書目名稱Deep Learning Techniques for IoT Security and Privacy讀者反饋




書目名稱Deep Learning Techniques for IoT Security and Privacy讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:53:27 | 只看該作者
Philosophy of Hull Structure Designibutes of IoT systems that might possibly threaten the security of the system. Firstly, the definition and of the IoT system and the detailed description of its architecture are presented along with a taxonomy for dividing its architecture into layers with different complementary roles. Secondly, th
板凳
發(fā)表于 2025-3-22 03:43:55 | 只看該作者
地板
發(fā)表于 2025-3-22 07:56:51 | 只看該作者
Application of the VENUS Design System, determinations throughout time, which is a popular and broad challenge explored in lots of technical and industrial disciplines. RL nativey integrates an additional dimension (which is typically time, however not of necessity) into learning process, which lays it considerably near to the social awa
5#
發(fā)表于 2025-3-22 11:10:43 | 只看該作者
https://doi.org/10.1007/978-981-10-0269-4ities are thought to come up with multiple crucial smart IoT applications i.e., smart manufacturing, smart transportation, autonomous driving/flight, smart buildings, smart healthcare, smart grid, and so many others (Lo et al. in ACM Comput. Surv., 2021). Effective deployment of these IoT applicatio
6#
發(fā)表于 2025-3-22 16:39:17 | 只看該作者
7#
發(fā)表于 2025-3-22 19:44:19 | 只看該作者
8#
發(fā)表于 2025-3-23 00:27:06 | 只看該作者
9#
發(fā)表于 2025-3-23 02:52:06 | 只看該作者
10#
發(fā)表于 2025-3-23 08:27:27 | 只看該作者
Deep Reinforcement Learning for Secure Internet of Things, determinations throughout time, which is a popular and broad challenge explored in lots of technical and industrial disciplines. RL nativey integrates an additional dimension (which is typically time, however not of necessity) into learning process, which lays it considerably near to the social awareness of AI.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 10:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
大方县| 龙陵县| 望奎县| 德惠市| 沅陵县| 丰镇市| 黎城县| 宜城市| 微山县| 若尔盖县| 台东市| 新丰县| 伽师县| 花垣县| 伊金霍洛旗| 广汉市| 隆子县| 湄潭县| 自治县| 米脂县| 恩平市| 河曲县| 交口县| 定兴县| 南雄市| 丰台区| 陇川县| 郴州市| 昔阳县| 大关县| 山东| 滕州市| 历史| 宜城市| 隆德县| 砀山县| 邻水| 红河县| 绍兴县| 白水县| 宝坻区|