找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Techniques for Biomedical and Health Informatics; Sujata Dash,Biswa Ranjan Acharya,Arpad Kelemen Book 2020 Springer Nature S

[復制鏈接]
樓主: ATE
41#
發(fā)表于 2025-3-28 18:11:36 | 只看該作者
42#
發(fā)表于 2025-3-28 20:04:15 | 只看該作者
43#
發(fā)表于 2025-3-29 01:10:47 | 只看該作者
Automated Brain Tumor Segmentation in MRI Images Using Deep Learning: Overview, Challenges and Futursent complex structures, self-learning and efficiently process large amounts of MRI-based image data. Initially the chapter starts with brain tumor introduction and its various types. In the next section, various preprocessing techniques are discussed. Preprocessing is a crucial step for the correct
44#
發(fā)表于 2025-3-29 03:08:40 | 只看該作者
https://doi.org/10.1007/978-3-540-72962-4ing Part of Speech Tagging, Chunking, and Entity Recognition on clinical texts. The sequence modeler in MedNLU is an integrated framework of Convolutional Neural Network, Conditional Random Fields and Bi-directional Long-Short Term Memory network.
45#
發(fā)表于 2025-3-29 09:51:52 | 只看該作者
46#
發(fā)表于 2025-3-29 13:35:00 | 只看該作者
Implementing the ST-II Protocol, image analysis, computer aided diagnosis (CAD), image registration and, image-guided therapy and many more. The aim of writing this chapter is to describe the DL methods and, the future of biomedical imaging using DL in detail and discuss the issues and challenges.
47#
發(fā)表于 2025-3-29 15:45:17 | 只看該作者
48#
發(fā)表于 2025-3-29 21:14:36 | 只看該作者
Malaria Disease Detection Using CNN Technique with SGD, RMSprop and ADAM Optimizersnormal blood films. The experimental result show our model works well on microscopic image and achieves an accuracy of 96.62% and the model has a lower model complexity are requires less computation time. Thus outperforming the state of art used previously.
49#
發(fā)表于 2025-3-30 01:03:44 | 只看該作者
50#
發(fā)表于 2025-3-30 07:30:41 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新余市| 太康县| 福泉市| 哈巴河县| 翁源县| 上饶市| 峨山| 台安县| 通化县| 仲巴县| 博野县| 盱眙县| 新余市| 依安县| 栾城县| 虹口区| 山东| 交城县| 大同市| 杂多县| 那坡县| 西峡县| 望江县| 于田县| 武隆县| 沽源县| 吉安县| 恭城| 天门市| 苏尼特左旗| 宜城市| 宁海县| 柘荣县| 合江县| 华亭县| 开原市| 来安县| 桦南县| 青浦区| 祁门县| 津南区|