找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Systems; Algorithms, Compiler Andres Rodriguez Book 2021 Springer Nature Switzerland AG 2021

[復(fù)制鏈接]
查看: 54274|回復(fù): 47
樓主
發(fā)表于 2025-3-21 16:53:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning Systems
副標(biāo)題Algorithms, Compiler
編輯Andres Rodriguez
視頻videohttp://file.papertrans.cn/265/264580/264580.mp4
叢書名稱Synthesis Lectures on Computer Architecture
圖書封面Titlebook: Deep Learning Systems; Algorithms, Compiler Andres Rodriguez Book 2021 Springer Nature Switzerland AG 2021
描述This book describes deep learning systems: the algorithms, compilers, and processor components to efficiently train and deploy deep learning models for commercial applications. The exponential growth in computational power is slowing at a time when the amount of compute consumed by state-of-the-art deep learning (DL) workloads is rapidly growing. Model size, serving latency, and power constraints are a significant challenge in the deployment of DL models for many applications. Therefore, it is imperative to codesign algorithms, compilers, and hardware to accelerate advances in this field with holistic system-level and algorithm solutions that improve performance, power, and efficiency. Advancing DL systems generally involves three types of engineers: (1) data scientists that utilize and develop DL algorithms in partnership with domain experts, such as medical, economic, or climate scientists; (2) hardware designers that develop specialized hardware to accelerate the components in the DL models; and (3) performance and compiler engineers that optimize software to run more efficiently on a given hardware. Hardware engineers should be aware of the characteristics and components of pro
出版日期Book 2021
版次1
doihttps://doi.org/10.1007/978-3-031-01769-8
isbn_softcover978-3-031-00641-8
isbn_ebook978-3-031-01769-8Series ISSN 1935-3235 Series E-ISSN 1935-3243
issn_series 1935-3235
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Deep Learning Systems影響因子(影響力)




書目名稱Deep Learning Systems影響因子(影響力)學(xué)科排名




書目名稱Deep Learning Systems網(wǎng)絡(luò)公開度




書目名稱Deep Learning Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning Systems被引頻次




書目名稱Deep Learning Systems被引頻次學(xué)科排名




書目名稱Deep Learning Systems年度引用




書目名稱Deep Learning Systems年度引用學(xué)科排名




書目名稱Deep Learning Systems讀者反饋




書目名稱Deep Learning Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:05:31 | 只看該作者
Compiler Optimizations,/C++, Swift, and Julia. Assembly (asm) is a low-level language that targets a specific instruction set architecture (ISA). In between are intermediate languages that are assembly-like in format but general enough for execution on different ISA, such as LLVM IR, various Multi-Level IR (MLIR) dialects, and PTX for Nvidia GPUs.
板凳
發(fā)表于 2025-3-22 04:16:44 | 只看該作者
Training a Model,cing the model size, and evaluating the trained model. The training process can be computational and memory intensive, and there are techniques discussed in this and the next two chapters to reduce the training time and mitigate memory bottlenecks.
地板
發(fā)表于 2025-3-22 05:09:22 | 只看該作者
5#
發(fā)表于 2025-3-22 09:35:41 | 只看該作者
B. Milner,V. Rapoport,L. Yevenko/C++, Swift, and Julia. Assembly (asm) is a low-level language that targets a specific instruction set architecture (ISA). In between are intermediate languages that are assembly-like in format but general enough for execution on different ISA, such as LLVM IR, various Multi-Level IR (MLIR) dialects, and PTX for Nvidia GPUs.
6#
發(fā)表于 2025-3-22 13:29:41 | 只看該作者
7#
發(fā)表于 2025-3-22 17:06:02 | 只看該作者
8#
發(fā)表于 2025-3-22 23:08:20 | 只看該作者
9#
發(fā)表于 2025-3-23 04:24:37 | 只看該作者
Introduction,ectory in hardware and is unsustainable. In addition, the main memory bandwidth is becoming a more significant bottleneck; computational capacity is growing much faster than memory bandwidth, and many algorithms are already bandwidth bound.
10#
發(fā)表于 2025-3-23 08:34:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 09:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
景东| 柞水县| 莆田市| 洛扎县| 修文县| 宁国市| 林口县| 综艺| 格尔木市| 远安县| 沁阳市| 广宗县| 菏泽市| 蒙阴县| 平南县| 留坝县| 乐亭县| 牡丹江市| 贺州市| 绵竹市| 永靖县| 旅游| 宜兰市| 和林格尔县| 庄浪县| 澜沧| 扬州市| 象山县| 惠安县| 黄冈市| 崇仁县| 新郑市| 香河县| 大港区| 奎屯市| 纳雍县| 班戈县| 定边县| 金阳县| 南部县| 衡东县|