找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Projects Using TensorFlow 2; Neural Network Devel Vinita Silaparasetty Book 2020 Vinita Silaparasetty 2020 deep learning.tens

[復(fù)制鏈接]
查看: 21260|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:57:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning Projects Using TensorFlow 2
副標(biāo)題Neural Network Devel
編輯Vinita Silaparasetty
視頻videohttp://file.papertrans.cn/265/264579/264579.mp4
概述Study diagrams, tables, flowcharts, and other such visual aids to interact visually with deep learning information.Troubleshoot deep learning projects.Work through deep learning projects line-by-line
圖書封面Titlebook: Deep Learning Projects Using TensorFlow 2; Neural Network Devel Vinita Silaparasetty Book 2020 Vinita Silaparasetty 2020 deep learning.tens
描述Work through engaging and practical deep learning projects using TensorFlow 2.0. Using a hands-on approach, the projects in this book will lead new programmers through the basics into developing practical deep learning applications.?.Deep learning is quickly integrating itself into the technology landscape. Its applications range from applicable data science to deep fakes and so much more. It is crucial for aspiring data scientists or those who want to enter the field of AI to understand deep learning concepts.?.The best way to learn is by doing. You‘ll develop a working knowledge of not only TensorFlow, but also related technologies such as Python and Keras. You‘ll also work with Neural Networks and other deep learning concepts. By the end of the book, you‘ll have a collection of unique projects that you can add to your GitHub profiles and expand on for professional application.?.What You‘ll Learn.Grasp the basic process of neural networks through projects, such as creating music.Restore and colorize black and white images with deep learning processes.Who This Book Is For.Beginners new to TensorFlow and Python.?.
出版日期Book 2020
關(guān)鍵詞deep learning; tensorflow; data science; artificial intelligence; ai; python; keras; neural networks; cnn
版次1
doihttps://doi.org/10.1007/978-1-4842-5802-6
isbn_softcover978-1-4842-5801-9
isbn_ebook978-1-4842-5802-6
copyrightVinita Silaparasetty 2020
The information of publication is updating

書目名稱Deep Learning Projects Using TensorFlow 2影響因子(影響力)




書目名稱Deep Learning Projects Using TensorFlow 2影響因子(影響力)學(xué)科排名




書目名稱Deep Learning Projects Using TensorFlow 2網(wǎng)絡(luò)公開度




書目名稱Deep Learning Projects Using TensorFlow 2網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning Projects Using TensorFlow 2被引頻次




書目名稱Deep Learning Projects Using TensorFlow 2被引頻次學(xué)科排名




書目名稱Deep Learning Projects Using TensorFlow 2年度引用




書目名稱Deep Learning Projects Using TensorFlow 2年度引用學(xué)科排名




書目名稱Deep Learning Projects Using TensorFlow 2讀者反饋




書目名稱Deep Learning Projects Using TensorFlow 2讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:24:08 | 只看該作者
Efficient Low-Power Hardware Design,ore powerful is a collection of neurons? That’s what we are going to discover in this chapter. Several neurons together make up a neural network. In this tutorial, we will create a multi-layer neuron and then classify the MNIST dataset with it. In Keras, a single iteration is referred to as an .. Let’s study neural networks more in detail.
板凳
發(fā)表于 2025-3-22 01:29:19 | 只看該作者
地板
發(fā)表于 2025-3-22 07:07:58 | 只看該作者
5#
發(fā)表于 2025-3-22 11:12:51 | 只看該作者
6#
發(fā)表于 2025-3-22 15:43:34 | 只看該作者
7#
發(fā)表于 2025-3-22 18:02:52 | 只看該作者
Graduate Texts in Operations ResearchThink you have a keen eye for spotting tampered images? Now what if the image has been manipulated so well that the average person is easily fooled? Neural networks can aid in finding subtle features of images and identify which ones are authentic and which ones have been modified. This is called
8#
發(fā)表于 2025-3-23 00:39:02 | 只看該作者
9#
發(fā)表于 2025-3-23 05:11:07 | 只看該作者
10#
發(fā)表于 2025-3-23 07:53:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 17:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌拉特中旗| 铅山县| 樟树市| 嘉兴市| 元氏县| 广灵县| 凤凰县| 惠水县| 右玉县| 澎湖县| 阳信县| 武平县| 镇雄县| 沐川县| 郑州市| 称多县| 岳阳县| 固阳县| 英吉沙县| 临武县| 翼城县| 揭阳市| 乡宁县| 洛阳市| 佛学| 鹿邑县| 吴堡县| 合肥市| 眉山市| 洱源县| 锡林郭勒盟| 菏泽市| 崇义县| 工布江达县| 永福县| 河南省| 木兰县| 舞钢市| 凌源市| 南靖县| 镇赉县|